Citation: Jin CHANG. Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108 shu

Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2

  • Corresponding author: Jin CHANG, changjin621@163.com
  • Received Date: 3 April 2024
    Revised Date: 24 July 2024

Figures(11)

  • Co-doped Ni(OH)2 was prepared by a simple co-precipitation method, and the electrochemical performance was improved by the Co/Ni synergistic effect. Co-doping refined the grain size of Ni(OH)2, improved the morphology of the material, exposed more active sites, and improved the electrochemical activity of the material. Meanwhile, the first-principle calculation showed that Co-doping also changed the electron density distribution of Ni, leading to the improvement of the charge transport and ion diffusion properties of the material. Due to the appropriate quantity of Co doping, Ni0.84Co0.16(OH)2 had excellent electrochemical energy storage of 1 589.6 F·g-1 at the current density of 1 A·g-1, far higher than that of Ni(OH)2 (1 191.7 F·g-1). Meanwhile, the assembled asymmetric super-capacitor had an energy density of 8.30 Wh·kg-1 when the power density was 21.33 kW·kg-1, showing a good energy storage performance and cycle performance.
  • 加载中
    1. [1]

      Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related devices[J]. Nat. Mater., 2020,19(11):1151-1163.

    2. [2]

      Zhu Q C, Zhao D Y, Cheng M Y, Zhou J Q, Owusu K A, Mai L Q, Yu Y. A new view of supercapacitors: Integrated supercapacitors[J]. Adv. Energy Mater., 2019,9(36)1901081. doi: 10.1002/aenm.201901081

    3. [3]

      Zhang L, Yang S H, Chang J, Zhao D G, Wang J Q, Yang C, Cao B Q. A review of redox electrolytes for supercapacitors[J]. Front. Chem., 2020,8413. doi: 10.3389/fchem.2020.00413

    4. [4]

      Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M. Supercapacitors: Properties and applications[J]. J. Energy Storage, 2018,17:224-227. doi: 10.1016/j.est.2018.03.012

    5. [5]

      Chatterjee D P, Nandi A K. A review on the recent advances in hybrid supercapacitors[J]. J. Mater. Chem. A, 2021,9(29):15880-15918. doi: 10.1039/D1TA02505H

    6. [6]

      Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J. Asymmetric supercapacitor electrodes and devices[J]. Adv. Mater., 2017,29(21)1605336. doi: 10.1002/adma.201605336

    7. [7]

      Shao Y L, El-Kady M F, Sun J Y, Li Y G, Zhang Q H, Zhu M F, Wang H Z, Dunn B, Kaner R B. Design and mechanisms of asymmetric supercapacitors[J]. Chem. Rev., 2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252

    8. [8]

      Liu R, Zhou A, Zhang X R, Mu J B, Che H W, Wang Y M, Wang T T, Zhang Z X, Kou Z K. Fundamentals, advances and challenges of transition metal compounds-based supercapacitors[J]. Chem. Eng. J., 2021,412128611. doi: 10.1016/j.cej.2021.128611

    9. [9]

      Natarajan S, Ulaganathan M, Aravindan V. Building next-generation supercapacitors with battery type Ni(OH)2[J]. J. Mater. Chem. A, 2021,9(28):15542-15585. doi: 10.1039/D1TA03262C

    10. [10]

      Wu X L, Zeng F, Song X Y, Sha X F, Zhou H T, Zhang X G, Liu Z, Yu M H, Jiang C Z. In-situ growth of Ni(OH)2 nanoplates on highly oxidized graphene for all-solid-state flexible supercapacitors[J]. Chem. Eng. J., 2023,456140947. doi: 10.1016/j.cej.2022.140947

    11. [11]

      Zhu Y Y, An S L, Cui J L, Qiu H R, Sun X J, Zhang Y Q, He W X. Improving the specific capacity of nickel hydroxide nanocrystals via yttrium doping for application in hybrid supercapacitors[J]. CrystEngComm, 2019,21(27):4079-4084. doi: 10.1039/C9CE00625G

    12. [12]

      Liao W X, Zhou G. Conditions for magnetic and electronic properties of ultrathin Ni-Fe hydroxide nanosheets as catalysts: A DFT+U study[J]. Sci. China-Mater., 2017,60(7):664-673. doi: 10.1007/s40843-017-9048-1

    13. [13]

      Zhang L, Qin R Y, Pan Y P, Duan Z A, Li Y, Xi N, Jian L, Han S M. Boosting discharge capability of α-Ni(OH)2 by cobalt doping based on robust spherical structure[J]. Int. J. Hydrog. Energy, 2022,47(2):1083-1091. doi: 10.1016/j.ijhydene.2021.10.040

    14. [14]

      Bao Y X, Liu P, Zhang J X, Wang L, Wang M H, Mei H, Zhang Q, Chen C, Xiao Z Y. Construction of carbon quantum dots embed α-Co/Ni(OH)2 hollo nanocages with enhanced supercapacitor performance[J]. J. Am. Ceram. Soc., 2020,103(8):4342-4351. doi: 10.1111/jace.17095

    15. [15]

      Ma L, Kang C X, Fu L K, Cao S Y, Zhu H J, Liu Q M. Core-shell Ni1.5Sn@Ni(OH)2 nanoflowers as battery-type supercapacitor electrodes with high rate and capacitance[J]. J. Colloid Interface Sci., 2022,613:244-255. doi: 10.1016/j.jcis.2022.01.054

    16. [16]

      Zhong W D, Li W L, Yang C F, Wu J, Zhao R, Idrees M, Xiang H, Zhang Q, Li X K. Interfacial electron rearrangement: Ni activated Ni(OH)2 for efficient hydrogen evolution[J]. J. Energy Chem., 2021,61:236-242. doi: 10.1016/j.jechem.2021.02.013

    17. [17]

      Zhu F, Zhou S Y, Sun M Y, Ma J F, Zhang W, Li K J, Cheng H, Komarneni S. Heterogeneous activation of persulfate by Mg doped Ni(OH)2 for efficient degradation of phenol[J]. Chemosphere, 2022,286(Part 1)131647.

    18. [18]

      Liang D W, Wu S L, Liu J, Tian Z F, Liang C H. Co-doped Ni hydroxide and oxide nanosheet networks: Laser-assisted synthesis, effective doping, and ultrahigh pseudocapacitor performance[J]. J. Mater. Chem. A, 2016,4(27):10609-10617. doi: 10.1039/C6TA03408J

    19. [19]

      Chen H, Hu L F, Chen M, Yan Y, Wu L M. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials[J]. Adv. Funct. Mater., 2014,24(7):934-942. doi: 10.1002/adfm.201301747

    20. [20]

      Liu Y, Fu N Q, Zhang G G, Xu M, Lu W, Zhou L M, Huang H T. Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors[J]. Adv. Funct. Mater., 2017,27(8)1605307.

    21. [21]

      Wang L, Chen H, Daniel Q, Duan L L, Philippe B, Yang Y, Rensmo H, Sun L C. Promoting the water oxidation catalysis by synergistic interactions between Ni(OH)2 and carbon nanotubes[J]. Adv. Energy Mater., 2016,6(15)1600516.

    22. [22]

      Li X, Wu H J, Elshahawy A M, Wang L, Pennycook S J, Guan C, Wang J. Cactus-like NiCoP/NiCo-OH 3D architecture with tunable composition for high-performance electrochemical capacitors[J]. Adv. Funct. Mater., 2018,28(20)1800036.

    23. [23]

      Xu Z X, Ying Y R, Zhang G G, Li K Z, Liu Y, Fu N Q, Guo X Y, Yu F, Huang H T. Engineering NiFe layered double hydroxide by valence control and intermediate stabilization toward the oxygen evolution reaction[J]. J. Mater. Chem. A, 2020,8(48):26130-26138.

    24. [24]

      Yue L G, Chen L, Wang X Y, Lu D Z, Zhou W L, Shen D J, Yang Q, Xiao S F, Li Y Y. Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors[J]. Chem. Eng. J., 2023,451138687.

    25. [25]

      Li J H, Wang L L, He H J, Chen Y Q, Gao Z R, Ma N, Wang B, Zheng L L, Li R L, Wei Y J, Xu J Q, Xu Y, Cheng B W, Yin Z, Ma D. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction[J]. Nano Res., 2022,15(6):4986-4995.

    26. [26]

      Zhang W, Fan H F, Liu Q F, Ta N, Pu Y G, Chen X Z, Sui Y W, Wang E, Cao P. Nickel-rich NiCo LDHs supported on hollow carbon shells for hybrid supercapacitors[J]. Electrochim. Acta, 2021,395139167.

    27. [27]

      Li Z L, Ning S L, Xu J C, Zhu J M, Yuan Z X, Wu Y L, Chen J, Xie F Y, Jin Y S, Wang N, Meng H, Sun S H. In situ electrochemical activation of Co(OH)2@Ni(OH)2 heterostructures for efficient ethanol electrooxidation reforming and innovative zinc-ethanol-air batteries[J]. Energy Environ. Sci., 2022,15(12):5300-5312.

    28. [28]

      Zhao B T, Zhang L, Zhang Q B, Chen D C, Cheng Y, Deng X, Chen Y, Murphy R, Xiong X H, Song B, Wong C P, Wang M S, Liu M L. Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage[J]. Adv. Energy Mater., 2017,8(9)1702247.

    29. [29]

      Chang J, Zhang S, Shi M J, Feng J, Liu Z, Wei T, Fan Z J. Ni, Co hydroxide modified by partial substitution of OH- with Cl- for boosting ultra-fast redox kinetics up to 500 mV·s-1 in supercapacitors[J]. Adv. Funct. Mater., 2022,32(17)2109225.

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(0)
  • Abstract views(38)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return