A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy
- Corresponding author: Tao LIU, liutao@llu.edu.cn Caixia YIN, yincx@sxu.edu.cn
Citation: Tao LIU, Yuting TIAN, Ke GAO, Xuwei HAN, Ru'nan MIN, Wenjing ZHAO, Xueyi SUN, Caixia YIN. A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
Ackroyd R, Kelty C, Brown N, Reed M. The history of photodetection and photodynamic therapy[J]. Photochem. Photobiol., 2001,74(5):656-669. doi: 10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2
Ferrari M. Cancer nanotechnology: Opportunities and challenges[J]. Nat. Rev. Cancer, 2005,5:161-171. doi: 10.1038/nrc1566
Zhang S, Xu J B, Chen H, Song Z F, Wu Y L, Dai X Y, Kong J. Acid-cleavable unimolecular micelles from amphiphilic star copolymers for triggered release of anticancer drugs[J]. Macromol. Biosci., 2017,17(3)1600258. doi: 10.1002/mabi.201600258
Duan X, Bai T, Du J J, Kong J. One - pot synthesis of glutathione-responsive amphiphilic drug self - delivery micelles of doxorubicin-disulfide-methoxy polyethylene glycol for tumor therapy[J]. J. Mater. Chem. B, 2018,6(1):39-43. doi: 10.1039/C7TB02817B
Li X S, Lovell J F, Yoon J Y, Chen X Y. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nat. Rev. Clin. Oncol., 2020,17:657-674. doi: 10.1038/s41571-020-0410-2
Liu Y J, Bhattarai P, Dai Z F, Chen X Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem. Soc. Rev., 2019,48(7):2053-2108. doi: 10.1039/C8CS00618K
Xie Z J, Fan T J, An J, Choi W, Duo Y H, Ge Y Q, Zhang B, Nie G H, Xie N, Zheng T T, Chen Y, Zhang H, Kim J S. Emerging combination strategies with phototherapy in cancer nanomedicine[J]. Chem. Soc. Rev., 2020,49(22):8065-8087. doi: 10.1039/D0CS00215A
Richter K, Haslbeck M, Buchner J. The heat shock response: Life on the verge of death[J]. Mol. Cell, 2010,40(2):253-266. doi: 10.1016/j.molcel.2010.10.006
Knavel E M, Brace C L. Tumor ablation: Common modalities and general practices[J]. Tech. Vasc. Interv. Radiol., 2013,16(4):192-200. doi: 10.1053/j.tvir.2013.08.002
Liu G X, Li B Q, Li J, Dong J X, Baulin V E, Feng Y J, Jia D C, Petrov Y V, Tsivadze A Y, Zhou Y. Photothermal carbon dots chelated hydroxyapatite filler: high photothermal conversion efficiency and enhancing adhesion of hydrogel[J]. ACS Appl. Mater. Interfaces, 2023,15(48):55335-55345. doi: 10.1021/acsami.3c11957
Irmania N, Dehvari K, Chang J Y. Multifunctional MnCuInSe/ZnS quantum dots for bioimaging and photodynamic therapy[J]. J. Biomater. Appl., 2022,36(9):1617-1628. doi: 10.1177/08853282211068959
Li B L, Zhao S J, Huang L, Wang Q, Xiao J F, Lan M H. Recent advances and prospects of carbon dots in phototherapy[J]. Chem. Eng. J., 2021,408127245. doi: 10.1016/j.cej.2020.127245
Xu C, Pu K Y. Second near-infrared photothermal materials for com-binational nanotheranostics[J]. Chem. Soc. Rev., 2021,50(2):1111-1137. doi: 10.1039/D0CS00664E
Cheng L, Wang C, Feng L Z, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer[J]. Chem. Rev., 2014,114(21):10869-10939. doi: 10.1021/cr400532z
Zhou B J, Li Y Z, Niu G L, Lan M H, Jia Q Y, Liang Q L. Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer[J]. ACS Appl. Mater. Interfaces, 2016,8(44):29899-29905. doi: 10.1021/acsami.6b07838
Peng F, Setyawati M I, Tee J K, Ding X G, Wang J P, Nga M E, Ho H K, Leong D T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness[J]. Nat. Nanotechnol., 2019,14:279-286. doi: 10.1038/s41565-018-0356-z
Xing M M, Han Y Y, Zhu Y L, Sun Y T, Shan Y Y, Wang K N, Liu Q X, Dong B L, Cao D X, Lin W Y. Two ratiometric fluorescent probes based on the hydroxyl coumarin chalcone unit with large fluorescent peak shift for the detection of hydrazine in living cells[J]. Anal. Chem., 2022,94(37):12836-12844. doi: 10.1021/acs.analchem.2c02798
Xin H T, Huang Y, Han Y Y, Tang L Y, Yang G Y, Zhang Y, Zhao S F, Wang K N, Li Y B, Cao D X. A two - photon iridium(Ⅲ) complex probe for sensitive detection of SO2 derivatives in living cell mitochondria[J]. Spectroc. Acta Pt. A - Molec. Biomolec. Spectr., 2023,299(15)122876.
Yoon H J, Lee H S, Lim J Y, Park J H. Liposomal indocyanine green for enhanced photothermal therapy[J]. ACS Appl. Mater. Interfaces, 2017,9(7):5683-5691. doi: 10.1021/acsami.6b16801
Chen Z, Zhao P F, Luo Z Y, Zheng M B, Tian H, Gong P, Gao G H, Pan H, Liu L L, Ma A Q, Cui H D, Ma Y F, Cai L T. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy[J]. ACS Nano, 2016,10(11):10049-10057. doi: 10.1021/acsnano.6b04695
Jung H S, Verwilst P, Sharma A, Shin J, Sessler J L, Kim J S. Organic molecule - based photothermal agents: An expanding photothermal therapy universe[J]. Chem. Soc. Rev., 2018,47(7):2280-2297. doi: 10.1039/C7CS00522A
Van der Velde J H M, Oelerich J, Huang J Y, Smit J H, Jazi A A, Galiani S, Kolmakov K, Guoridis G, Eggeling C, Herrmann A, Roelfes G, Cordes T. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization[J]. Nat. Commun., 2016,710144. doi: 10.1038/ncomms10144
Lei Z H, Zhang F. Molecular engineering of NIR-Ⅱ fluorophores for improved biomedical detection[J]. Angew. Chem. Int. Ed., 2021,60(30):16294-16308. doi: 10.1002/anie.202007040
Cheng P H, Pu K Y. Molecular imaging and disease theranostics with renal-clearable optical agents[J]. Nat. Rev. Mater., 2021,6:1095-1113. doi: 10.1038/s41578-021-00328-6
Wang H Y, Chang J J, Shi M W, Pan W, Li N, Tang B. A dual -targeted organic photothermal agent for enhanced photothermal therapy[J]. Angew. Chem. Int. Ed., 2019,58(4):1057-1061. doi: 10.1002/anie.201811273
Zhang L P, Kang L, Li X Q, Liu S Y, Liu T L, Zhao Y X. Pyrazino[2, 3-g] quinoxaline-based nanoparticles as near-infrared phototheranostic agents for efficient photoacoustic-imaging-guided photothermal ther-apy[J]. ACS Appl. Nano Mater., 2021,4(2):2019-2029. doi: 10.1021/acsanm.0c03346
Li C N, Lin W H, Liu S, Sun T T, Xie Z G. Structural optimization of organic fluorophores for highly efficient photothermal therapy[J]. Mater. Chem. Front., 2021,5(1):284-292. doi: 10.1039/D0QM00624F
Wang Z, Liu Y, He C X, Zhang X M, Li X, Li Y Y, Tang Y F, Lu X M, Fan Q L. Small-molecule phototheranostic agent with extended π-conjugation for efficient NIR-Ⅱ photoacoustic-imaging-guided photo-thermal therapy[J]. Small, 2024,20(17)2307829. doi: 10.1002/smll.202307829
Li S L, Deng Q Y, Zhang Y C, Li X Z, Wen G H, Cui X, Wan Y P, Huang Y W, Chen J X, Liu Z H, Wang L D, Lee C S. Rational design of conjugated small molecules for superior photothermal theranostics in the NIR -Ⅱ biowindow[J]. Adv. Mater., 2020,32(33)2001146. doi: 10.1002/adma.202001146
Jia W Y, Huang F F, Zhang Q, Zhao L L, Li C X, Lu Y. Novel conjugated small molecule-based nanoparticles for NIR - Ⅱ photothermal antibacterial therapy[J]. Chem. Commun., 2022,58(43):6340-6343. doi: 10.1039/D2CC00863G
Yang C Y, Guo L X, Zhang K X, Wang G, Yu Q S, Gan Z H, Gu X G. Diradical-featured organic small-molecule photothermal material based on 4, 6-di(2-thienyl)thieno[3, 4-c][1, 2, 5]thiadiazole for photothermal immunotherapy[J]. Adv. Funct. Mater., 2023,33(52)2306360. doi: 10.1002/adfm.202306360
Wu X J, Cai Y, Wang C, Fan L, Tang Q Y, Dong X C, Zhang Q. Tumor - targeting nanoparticles of small - molecule diketopyrrolopyr-role derivative for photothermal therapy[J]. J. Nanosci. Nanotechnol., 2018,18(4):2337-2344. doi: 10.1166/jnn.2018.14352
Cheng Z J, Zhang T, Wang W L, Shen Q, Hong Y, Shao J J, Xie X J, Fei Z H, Dong X C. D - A - D structured selenadiazolesbenzothiadia-zole - based near - infrared dye for enhanced photoacoustic imaging and photothermal cancer therapy[J]. Chin. Chem. Lett., 2021,32(4):1580-1585. doi: 10.1016/j.cclet.2021.02.017
Yue Y K, Xu Z, Ma K Q, Huo F J, Qin X M, Zhang K S, Yin C X. HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials[J]. Chin. Chem. Lett., 2024,35(8)109223. doi: 10.1016/j.cclet.2023.109223
Jiang F, Hu Q H, Zhang Z M, Li H M, Li H L, Zhang D W, Li H W, Ma Y, Xu J J, Chen H F, Cui Y, Zhi Y L, Zhang Y M, Xu J Y, Zhu J P, Lu T, Chen Y D. Discovery of benzo[cd]indol-2(1H)-ones and pyrrolo[4, 3, 2-de]quinolin-2(1H) - ones as bromodomain and extra-terminal domain (BET) inhibitors with selectivity for the first bromodomain with potential high efficiency against acute gouty arthritis[J]. J. Med. Chem., 2019,62(24):11080-11107. doi: 10.1021/acs.jmedchem.9b01010
Yin G X, Niu T T, Gan Y B, Yu T, Yin P, Chen H M, Zhang Y Y, Li H T, Yao S Z. A multi -signal fluorescent probe with multiple binding sites for simultaneous sensing of cysteine, homocysteine, and glutathione[J]. Angew. Chem., Int. Ed., 2018,57(18):4991-4994. doi: 10.1002/anie.201800485
Beija M, Afonso C A M, Martinho J M G. Synthesis and applications of Rhodamine derivatives as fluorescent probes[J]. Chem. Soc. Rev., 2009,38(8):2410-2433. doi: 10.1039/b901612k
Jiang G W, Ren T B, D'Este E, Xiong M Y, Xiong B, Johnsson K, Zhang X B, Wang L, Yuan L. A synergistic strategy to develop photo-stable and bright dyes with long stokes shift for nanoscopy[J]. Nat. Commun., 2022,132264. doi: 10.1038/s41467-022-29547-3
Huang P, Lin J, Li W W, Rong P F, Wang Z, Wang S J, Wang X P, Sun X L, Aronova M, Niu G, Leapman R D, Nie Z H, Chen X Y. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy[J]. Angew. Chem., Int. Ed., 2013,52(52):13958-13964. doi: 10.1002/anie.201308986
Zhang X F, Sun Q, Huang Z L, Huang L R, Xiao Y. Immobilizable fluorescent probes for monitoring the mitochondria microenvironment: A next step from the classic[J]. J. Mater. Chem. B, 2019,7(17):2749-2758. doi: 10.1039/C9TB00043G
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Songtao Cai , Liuying Wu , Yuan Li , Soham Samanta , Jinying Wang , Bing Liu , Feihu Wu , Kaitao Lai , Yingchao Liu , Junle Qu , Zhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Yu Qin , Mingyang Huang , Chenlu Huang , Hannah L. Perry , Linhua Zhang , Dunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Yongkang Yue , Zhou Xu , Kaiqing Ma , Fangjun Huo , Xuemei Qin , Kuanshou Zhang , Caixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
Feng Wu , Xuemin Kong , Yixuan Liu , Shuli Wang , Zhong Chen , Xu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754
Fengyun Li , Zerong Pei , Shuting Chen , Gen li , Mengyang Liu , Liqin Ding , Jingbo Liu , Feng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752
Zikang Hu , Hengjie Zhang , Zhengqiu Li , Tianbao Zhao , Zhipeng Gu , Qijuan Yuan , Baoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Zhe Li , Ping-Zhao Liang , Li Xu , Fei-Yu Yang , Tian-Bing Ren , Lin Yuan , Xia Yin , Xiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190
An Lu , Yuhao Guo , Yi Yan , Lin Zhai , Xiangyu Wang , Weiran Cao , Zijie Li , Zhixia Zhao , Yujie Shi , Yuanjun Zhu , Xiaoyan Liu , Huining He , Zhiyu Wang , Jian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928
Ji Liu , Dongsheng He , Tianjiao Hao , Yumin Hu , Yan Zhao , Zhen Li , Chang Liu , Daquan Chen , Qiyue Wang , Xiaofei Xin , Yan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Wen Xiao , Fazhan Wang , Yangzhuo Gu , Xi He , Na Fan , Qian Zheng , Shugang Qin , Zhongshan He , Yuquan Wei , Xiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755
(ⅰ) CH3CH2I, KOH, K2CO3, 2-methoxyethanol; (ⅱ) CH3MgCl, THF; (ⅲ) piperidine, EtOH.
The concentration of ECEI was 10 µmol·L-1.
(c)A: ECEI, B: Na+, C: Mg2+, D: K+, E: SO42-, F: HS-, G: Cl-, H: CO32-, I: SO32-, J: Glu, K: Cys, L: Gly, M: Hcy; I797: the fluorescent intensity at the wavelength of 797 nm.
Red channel: λex=633 nm, λem=(710±30) nm; Green channel: λex=488 nm, λem=(530±30) nm.
Red channel: λex=561 nm, λem=(620±30) nm; Green channel: λex=488 nm, λem=(530±30) nm.