Citation: Juan WANG, Zhongqiu WANG, Qin SHANG, Guohong WANG, Jinmao LI. NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102 shu

NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers

Figures(9)

  • A BaTiO3/Pt/NiS double heterojunction photocatalyst with Pt and NiS as co-catalysts was prepared using electrostatic spinning, hydrothermal, and photo-deposition methods. The optimized BaTiO3/Pt/NiS sample showed the highest hydrogen production rate of 489 μmol·h-1·g-1, which is 2.5 times higher than that of pure BaTiO3. Exper-imental results and density functional theory (DFT) calculations have demonstrated the construction of a p-n junction between BaTiO3 and NiS, which efficiently facilitates the transfer of photogenerated holes from BaTiO3 to NiS. Additionally, the Schottky junction formed between BaTiO3 and Pt promotes the migration of photogenerated electrons from BaTiO3 to Pt. The opposite transfer routes of photogenerated electrons and holes naturally inhibit their recombination, resulting in a higher rate of hydrogen evolution. These results were further validated by photoelectro-chemical testing. The highest photocurrent density and smallest electrochemical impedance of the optimized BaTiO3/Pt/NiS sample convincingly proved its fastest separation of photogenerated electrons and holes, thus displaying the highest activity for hydrogen production.
  • 加载中
    1. [1]

      Yang Y, Zhou C Y, Wang W J, Xiong W P, Zeng G M, Huang D L, Zhang C, Song B, Xue W J, Li X P, Wang Z W, He D H, Luo H Z, Ouyang Z L. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production[J]. Chem. Eng. J., 2021,405126547. doi: 10.1016/j.cej.2020.126547

    2. [2]

      Guo S H, Li X H, Li J, Wei B Q. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems[J]. Nat. Commun., 2021,121343.

    3. [3]

      Shi X W, Dai C, Wang X, Hu J Y, Zhang J Y, Zheng L X, Mao L, Zheng H J. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution[J]. Nat. Commun., 2022,131287. doi: 10.1038/s41467-022-28995-1

    4. [4]

      ZU W L, LI L, HUANG J W, SUN Y R, MA F Y, CAO Y Z. Multi-pathway photoelectron migration and photocatalytic properties of AgIn5S8/carbon quantum dots/ZnIn2S4[J]. Chinese J. Inorg. Chem., 2022,38(6):1059-1072.  

    5. [5]

      Ruan X W, Cui X Q, Cui Y, Fan X F, Li Z Y, Xie T F, Ba K K, Jia G R, Zhang H Y, Zhang L, Zhang W, Zhao X, Leng J, Jin S Y, Singh D J, Zheng W T. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%[J]. Adv. Energy Mater., 2022,12(16)2200298.

    6. [6]

      Li J M, Wu C C, Li J, Dong B H, Zhao L, Wang S M. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution[J]. Chin. J. Catal., 2022,43:339-349. doi: 10.1016/S1872-2067(21)63875-5

    7. [7]

      Shang Q, Wang J, Yang J, Wang Z Q, Wang G H, Wang K, Wu X H, Li J M. Photocatalytic hydrogen evolution coupled with tetracycline photodegradation over S-scheme BaTiO3/Ag2S dual-function nanofibers: Performance and mechanism[J]. Appl. Surf. Sci., 2023,635157760. doi: 10.1016/j.apsusc.2023.157760

    8. [8]

      Cao J F, Ji Y X, Tian C B, Yi Z G. Synthesis and enhancement of visible light activities of nitrogen-doped BaTiO3[J]. J. Alloy. Compd., 2014,615:243-248. doi: 10.1016/j.jallcom.2014.07.008

    9. [9]

      Amaechi I C, Hadj Youssef A, Kolhatkar G, Rawach D, Gomez-Yañez C, Claverie J P, Sun S, Ruediger A. Ultrafast microwave-assisted hydrothermal synthesis and photocatalytic behaviour of ferroelectric Fe3+-doped BaTiO3 nanoparticles under simulated sunlight[J]. Catal. Today, 2021,360:90-98. doi: 10.1016/j.cattod.2019.07.021

    10. [10]

      Demircivi P, Simsek E B. Visible-light-enhanced photoactivity of perovskite-type W-doped BaTiO3 photocatalyst for photodegradation of tetracycline[J]. J. Alloy. Compd., 2019,774:795-802. doi: 10.1016/j.jallcom.2018.09.354

    11. [11]

      MENG G X, TIAN X X, ZHANG J R, ZHANG X, HAN F Q, QU S B. Effects of donor-doped on photocatalytic properties of BaTiO3-based nanoparticle[J]. Chinese J. Inorg. Chem., 2019,35(8):1387-1395. doi: 10.11862/CJIC.2019.183

    12. [12]

      Yu C Y, He J J, Tan M X, Hou Y X, Zeng H, Liu C B, Meng H M, Su Y J, Qiao L J, Lookman T, Bai Y. Selective enhancement of photo- piezocatalytic performance in BaTiO3 via heterovalent ion doping[J]. Adv. Funct. Mater., 2022,32(52)2209365. doi: 10.1002/adfm.202209365

    13. [13]

      Cui Y F, Sun H H, Shen G D, Jing P P, Pu Y P. Effect of dual-cocatalyst surface modification on photodegradation activity, pathway, and mechanisms with highly efficient Ag/BaTiO3/MnOx[J]. Langmuir, 2020,36(2):498-509. doi: 10.1021/acs.langmuir.9b02714

    14. [14]

      Liu Z W, Zhao K, Xing G X, Zheng W X, Tang Y F. One-step synthesis of unique thorn-like BaTiO3-TiO2 composite nanofibers to enhance piezo-photocatalysis performance[J]. Ceram. Int., 2021,47(5):7278-7284. doi: 10.1016/j.ceramint.2020.11.017

    15. [15]

      Zhao W, Zhang Q, Wang H G, Rong J C, Lei E, Dai Y J. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect[J]. Nano Energy, 2020,73104783.

    16. [16]

      Wang P G, Fan S Y, Li X Y, Wang J, Liu Z Y, Bai C P, Tadé M O, Liu S M. Piezotronic effect and hierarchical Z-scheme heterostructure stimulated photocatalytic H2 evolution integrated with C—N coupling of benzylamine[J]. Nano Energy, 2021,89106349. doi: 10.1016/j.nanoen.2021.106349

    17. [17]

      Zhou L P, Dai S Q, Xu S, She Y Q, Li Y L, Leveneur S, Qin Y L. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-Cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants[J]. Appl. Catal. B-Environ Energy, 2021,291120019. doi: 10.1016/j.apcatb.2021.120019

    18. [18]

      Liu X T, Shen X F, Sa B S, Zhang Y G, Li X, Xue H. Piezotronic- enhanced photocatalytic performance of heterostructured BaTiO3/SrTiO3 nanofibers[J]. Nano Energy, 2021,89106391. doi: 10.1016/j.nanoen.2021.106391

    19. [19]

      Zhu M J, Zhang G H, Zhai L N, Cao J W, Li S S, Zeng T. Polarization-enhanced photoelectrochemical properties of BaTiO3/BaTiO3-x/CdS heterostructure nanocubes[J]. Dalton Trans., 2021,50:3137-3144. doi: 10.1039/D1DT00103E

    20. [20]

      He C P, Jing P P, Wang P F, Ji J M, Ouyang T, Cui Y F, Pu Y P. A novel hierarchical BaTiO3/AgI heterojunction with boosting spatial charge kinetics for photocatalytic degradation of organic pollutant[J]. Ceram. Int., 2021,47:33426-33434. doi: 10.1016/j.ceramint.2021.08.249

    21. [21]

      Huang X Y, Wang K Q, Wang Y Z, Wang B, Zhang L L, Gao F, Zhao Y, Feng W H, Zhang S Y, Liu P. Enhanced charge carrier separation to improve hydrogen production efficiency by ferroelectric spontaneous polarization electric field[J]. Appl. Catal. B: Environ., 2018,227:322-329. doi: 10.1016/j.apcatb.2018.01.036

    22. [22]

      Liu Q, Zhai D, Xiao Z D, Tang C, Sun Q W, Bowen C R, Luo H, Zhang D. Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation[J]. Nano Energy, 2022,92106702. doi: 10.1016/j.nanoen.2021.106702

    23. [23]

      Chen Y X, Lan S Y, Zhu M S. Construction of piezoelectric BaTiO3/MoS2 heterojunction for boosting piezo-activation of peroxymonosulfate[J]. Chinese Chem. Lett., 2021,32:2052-2056.

    24. [24]

      Zhou X F, Shen B, Zhai J W, Conesa J C. High performance generation of H2O2 under piezophototronic effect with multi-layer In2S3 nanosheets modified by spherical ZnS and BaTiO3 nanopiezoelectrics[J]. Small Methods, 2021,5(6)2100269.

    25. [25]

      Zhao H, Mao Q, Jian L, Dong Y M, Zhu Y F. Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms[J]. Chin. J. Catal., 2022,43(7):1774-1804.

    26. [26]

      Liu Y X, Sun Z X, Hu Y H. Bimetallic cocatalysts for photocatalytic hydrogen production from water[J]. Chem. Eng. J., 2021,409128250.

    27. [27]

      Xu F Y, Zhang L Y, Cheng B, Yu J G. Direct Z-scheme TiO2/NiS core-shell hybrid nanofibers with enhanced photocatalytic H2-production activity[J]. ACS Sustainable Chem. Eng., 2018,6(9):12291-12298.

    28. [28]

      Sun B S, Zheng J H, Yin D W, Jin H L, Wang X, Xu Q L, Liu A L, Wang S. Dual cocatalyst modified CdS achieving enhanced photocatalytic H2 generation and benzylamine oxidation performance[J]. Appl. Surf. Sci., 2022,592153277.

    29. [29]

      Zhao Y, Lu Y F, Chen L, Wei X F, Zhu J F, Zheng Y H. Redox dual-cocatalyst-modified CdS double-heterojunction photocatalysts for efficient hydrogen production[J]. ACS Appl. Mater. Interfaces, 2020,12:46073-46083.

    30. [30]

      Di T M, Deng Q R, Wang G M, Wang S G, Wang L X, Ma Y H. Photodeposition of CoOx and MoS2 on CdS as dual cocatalysts for photocatalytic H2 production[J]. J. Mater. Sci. Technol., 2022,124:209-216.

    31. [31]

      Xiang D Z, Hao X Q, Jin Z L. Cu/CdS/MnOx Nanostructure-based photocatalyst for photocatalytic hydrogen evolution[J]. ACS Appl. Nano Mater., 2021,4:13848-13860.

    32. [32]

      WANG Z L, WANG J, ZHANG J F, DAI K. Overall utilization of photoexcited charges for simultaneous photocatalytic redox reactions[J]. Acta Phys.-Chim. Sin., 2023,39(6):10-31.

    33. [33]

      Xing M Y, Qiu B C, Du M M, Zhu Q H, Wang L Z, Zhang J L. Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution[J]. Adv. Funct. Mater., 2017,27(35)1702624.

    34. [34]

      He B W, Bie C B, Fei X G, Cheng B, Yu J G, Ho W K, Al-Ghamdi A A, Wageh S. Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts[J]. Appl. Catal. B- Environ. Energy, 2021,288119994.

    35. [35]

      Yuan B, Wu J, Qin N, Lin E Z, Bao D H. Enhanced piezocatalytic performance of (Ba, Sr) TiO3 nanowires to degrade organic pollutants[J]. ACS Appl. Nano Mater., 2018,1(9):5119-5127.

    36. [36]

      Fu B, Li J J, Jiang H D, He X L, Ma Y M, Wang J K, Hu C Z. Modulation of electric dipoles inside electrospun BaTiO3@TiO2 core-shell nanofibers for enhanced piezo-photocatalytic degradation of organic pollutants[J]. Nano Energy, 2022,93106841.

    37. [37]

      Li Y Y, Li R, Zhai Y, Huang Y, Lee S C, Cao J J. Improved photocatalytic activity of BaTiO3/La2Ti2O7 heterojunction composites via piezoelectric-enhanced charge transfer[J]. Appl. Surf. Sci., 2021,570151146.

    38. [38]

      Wang C L, Hu L M, Chai B, Yan J T, Li J F. Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light[J]. Appl. Surf. Sci., 2018,430:243-252.

    39. [39]

      Meng L J, Wang Z H, Yang L, Ren W J, Liu W, Zhang Z D, Yang T, Santos M P D. A detailed study on the Fe-doped TiO2 thin films induced by pulsed laser deposition route[J]. Appl. Surf. Sci., 2019,474:211-217.

    40. [40]

      Yao S S, Tang H, Liu M Q, Chen L L, Jing M X, Shen X Q, Li T B, Tan J L. TiO2 nanoparticles incorporation in carbon nanofiber as a multi-functional interlayer toward ultralong cycle-life lithium-sulfur batteries[J]. J. Alloy Compd., 2019,788:639-648.

    41. [41]

      Sun H Q, Ullah R, Chong S, Ang H M, Tadé M O, Wang S B. Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst[J]. Appl. Catal. B-Environ. Energy, 2011,108-109:127-133.

    42. [42]

      Wang Y H, Zhang L, Hu C L, Yu S N, Yang P P, Cheng D F, Zhao Z J, Gong J L. Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction[J]. Nano Res., 2019,12:2268-2274.

    43. [43]

      SHI D, HUANG Z L, YAN S D, WANG J, WANG G H. Preparation of Bi3TaO7/MXene nanosheets heterojunction for photocatalytic degradation of sodium sulfadiazine[J]. Chinese J. Inorg. Chem., 2022,38(8):1487-1498.  

    44. [44]

      Sharma D, Upadhyay S, Satsangi V R, Shrivastav R, Waghmare U V, Dass S. Nanostructured BaTiO3/Cu2O heterojunction with improved photoelectrochemical activity for H2 evolution: Experimental and first-principles analysis[J]. Appl. Catal. B: Environ., 2016,189:75-85.

    45. [45]

      Majhi D, Samal P K, Das K, Gouda S K, Bhoi Y P, Mishra B G. α-NiS/Bi2O3 nanocomposites for enhanced photocatalytic degradation of tramadol[J]. ACS Appl. Nano Mater., 2019,2(1):395-407.

    46. [46]

      Xin Y J, Lu Y, Han C C, Ge L, Qiu P, Li Y J, Fang S M. Novel NiS cocatalyst decorating ultrathin 2D TiO2 nanosheets with enhanced photocatalytic hydrogen evolution activity[J]. Mater. Res. Bull., 2017,87:123-129.

    47. [47]

      Chen Z, Yang S B, Tian Z F, Zhu B C. NiS and graphene as dual cocatalysts for the enhanced photocatalytic H2 production activity of g-C3N4[J]. Appl. Surf. Sci., 2019,469:657-665.

    48. [48]

      Xie P C, Yang F, Li R J, Ai C Z, Lin C F, Lin S W. Improving hydrogen evolution activity of perovskite BaTiO3 with Mo doping: Experiments and first-principles analysis[J]. Int. J. Hydrogen Energy, 2019,44(23):11695-11704.

    49. [49]

      Wen J Q, Xie J, Yang Z H, Shen R C, Li H Y, Luo X Y, Chen X B, Li X. Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: An insight into the trifunctional roles of nanocarbons[J]. ACS Sustainable Chem. Eng., 2017,5(3):2224-2236.

    50. [50]

      Zhang C, Shao Z C, Zhang X L, Liu G Q, Zhang Y Z, Wu L, Liu C Y, Pan Y, Su F H, Gao M R, Li Y, Yu S H. Design principles for maximizing hole utilization of semiconductor quantum wires toward efficient photocatalysis[J]. Angew. Chem. Int. Ed., 2023,62e202305571.

    51. [51]

      Wang K, Qin H T, Li J, Cheng Q, Zhu Y F, Hu H Y, Peng J, Chen S Q, Wang G H. Metallic AgInS2 nanocrystals with sulfur vacancies boost atmospheric CO2 photoreduction under near-infrared light illumination[J]. Appl. Catal. B-Environ. Energy., 2023,332122763.

    52. [52]

      Wang K, Shao X L, Zhang K J, Wang J, Wu X H, Wang H K. 0D/3D Bi3TaO7/ZnIn2S4 heterojunction photocatalyst towards degradation of antibiotics coupled with simultaneous H2 evolution: In situ irradiated XPS investigation and S-scheme mechanism insight[J]. Appl. Surf. Sci., 2022,596153444.

    53. [53]

      Yang J, Wang J, Zhao W J, Wang G H, Wang K, Wu X H, Li J M. 0D/1D Cu2-xS/TiO2 S-scheme heterojunction with enhanced photocatalytic CO2 reduction performance via surface plasmon resonance induced photothermal effects[J]. Appl. Surf. Sci., 2023,613156083.

    54. [54]

      Liao Y W, Wang G H, Wang J, Wang K, Yan S D, Su Y R. Nitrogen vacancy induced in situ g-C3N4 p-n homojunction for boosting visible light-driven hydrogen evolution[J]. J. Colloid Interface Sci., 2021,587:110-120.

    55. [55]

      Che L, Pan J L, Cai K X, Cong Y Q, Lv S W. The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review[J]. Sep. Purif. Technol., 2023,315123708.

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(0)
  • Abstract views(42)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return