Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors
- Corresponding author: Yang ZHOU, iamyangzhou@njupt.edu.cn
Citation: Huan LI, Shengyan WANG, Long Zhang, Yue CAO, Xiaohan YANG, Ziliang WANG, Wenjuan ZHU, Wenlei ZHU, Yang ZHOU. Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
Reiss P, Carrière M, Lincheneau C, Vaure L, Tamang S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials[J]. Chem. Rev., 2016,116(18):10731-10819. doi: 10.1021/acs.chemrev.6b00116
Anikeeva P O, Halpert J E, Bawendi M G, Bulović V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer[J]. Nano Lett., 2007,7(8):2196-2200. doi: 10.1021/nl0703424
de Mello Donegá C. Synthesis and properties of colloidal heteronanocrystals[J]. Chem. Soc. Rev., 2011,40(3):1512-1546. doi: 10.1039/C0CS00055H
Yu S H, Antonietti M. Creative and relevant materials innovation[J]. The Innovation Materials, 2023,1(1)100002. doi: 10.59717/j.xinn-mater.2023.100002
Gao Y H, Song T, Guo X L, Zhang Y, Yang Y. Electronic interaction and oxygen vacancy engineering of g-C3N4/α-Bi2O3 Z-scheme heterojunction for enhanced photocatalytic aerobic oxidative homo-/hetero-coupling of amines to imines in aqueous phase[J]. Green Carbon, 2023,1(2):105-117. doi: 10.1016/j.greenca.2023.09.004
Wang B, Hu X M, Sun F W, Yang Z, Huang W. Advanced strategic constructions of diketopyrrolopyrrole derivatives-based organic semiconducting phototheranostics[J]. Interdisciplinary Medicine, 2023,1(1)e20220010. doi: 10.1002/INMD.20220010
Niu F, Zhou F G, Wang Z X, Wei L, Hu J, Dong L, Ma Y F, Wang M, Jia S T, Chen X Y, Tong Z M. Synthesizing metal oxide semiconductors on doped Si/SiO2 flexible fiber substrates for wearable gas sensing[J]. Research, 2023,60100. doi: 10.34133/research.0100
Lin D G, Zhang W H, Yin H, Hu H X, Li Y, Zhang H, Wang L, Xie X M, Hu H G, Yan Y G, Ling H F, Liu J A, Qian Y, Tang L, Wang Y G, Dong C Y, Xie L H, Zhang H, Wang S S, Wei Y, Guo X F, Lu D, Huang W. Cross-scale synthesis of organic high-k semiconductors based on spiro-gridized nanopolymers[J]. Research, 2022. doi: 10.34133/2022/9820585
de Arquer F P G, Talapin D V, Klimov V I, Arakawa Y, Bayer M, Sargent E H. Semiconductor quantum dots: Technological progress and future challenges[J]. Science, 2021,373(6555)eaaz8541. doi: 10.1126/science.aaz8541
Zhang L X, Qi M Y, Tang Z R, Xu Y J. Heterostructure-engineered semiconductor quantum dots toward photocatalyzed-redox cooperative coupling reaction[J]. Research, 2023,60073. doi: 10.34133/research.0073
Yang W S, Jiao L, Liu W, Dai H Q. Manufacture of highly transparent and hazy cellulose nanofibril films via coating tempo-oxidized wood fibers[J]. Nanomaterials, 2019,9(1)107. doi: 10.3390/nano9010107
Cao C C, Cao X. Nanowire-based smart windows achieving dynamic solar radiation regulation[J]. The Innovation Materials, 2023,1(2)100024. doi: 10.59717/j.xinn-mater.2023.100024
Rabouw F T, de Mello Donega C. Excited-state dynamics in colloidal semiconductor nanocrystals[J]. Top. Curr. Chem., 2016,374(5)58. doi: 10.1007/s41061-016-0060-0
Cai M, Wei Y X, Li Y K, Li X, Wang S B, Shao G S, Zhang P. 2D semiconductor nanosheets for solar photocatalysis[J]. EcoEnergy, 2023,1(2):248-295. doi: 10.1002/ece2.16
Yu Y L, Xiong T, Guo Z F, Hou S J, Yang J H, Liu Y Y, Gu H G, Wei Z M. Wide-spectrum polarization-sensitive and fast-response photodetector based on 2D group Ⅳ-Ⅵ semiconductor tin selenide[J]. Fundamental Res., 2022,2(6):985-992. doi: 10.1016/j.fmre.2022.02.008
Ummadisingu A, Meloni S, Mattoni A, Tress W, Grätzel M. Crystal-size-induced band gap tuning in perovskite films[J]. Angew. Chem. Int. Ed., 2021,60(39):21368-21376. doi: 10.1002/anie.202106394
Diroll B T, Guzelturk B, Po H, Dabard C, Fu N Y, Makke L, Lhuillier E, Ithurria S. 2D Ⅱ-Ⅵ semiconductor nanoplatelets: From material synthesis to optoelectronic integration[J]. Chem. Rev., 2023,123(7):3543-3624. doi: 10.1021/acs.chemrev.2c00436
Goh E S M, Chen T P, Sun C Q, Liu Y C. Thickness effect on the band gap and optical properties of germanium thin films[J]. J. Appl. Phys., 2010,107(2)024305. doi: 10.1063/1.3291103
Raciti R, Bahariqushchi R, Summonte C, Aydinli A, Terrasi A, Mirabella S. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis[J]. J. Appl. Phys., 2017,121(23)230304.
Wang Z B, Zheng S, Teng Q, Li C H, Zhuang B, Zhang R D, Huang F, Chen D Q, Yuan F L. Opportunity of lead-free metal halide perovskites for electroluminescence[J]. The Innovation Materials, 2023,1(1)100015. doi: 10.59717/j.xinn-mater.2023.100015
Hu H P, Wang Y C, Fu C G, Zhao X B, Zhu T J. Achieving metal-like malleability and ductility in Ag2Te1-xSx inorganic thermoelectric semiconductors with high mobility[J]. Innovation-Amsterdam, 2022,3(6)100341.
Yu W L, Li F, Huang T, Li W, Wu T. Go beyond the limit: Rationally designed mixed-dimensional perovskite/semiconductor heterostructures and their applications[J]. Innovation-Amsterdam, 2023,4(1)100363.
Xiao Y H, Yao C H, Su C L, Liu B. Nanoclusters for photoelectrochemical water splitting: Bridging the photosensitizer and carrier transporter[J]. EcoEnergy, 2023,1(1):60-84. doi: 10.1002/ece2.6
Sivtsev V, Lapushkina E, Kovalev I, Guskov R, Popov M, Nemudry A. Microtubular solid oxide fuel cells with a two-layer LSCF/BSCFM5 cathode[J]. Green Carbon, 2023,1(2):154-159. doi: 10.1016/j.greenca.2023.11.002
Busatto S, de Mello Donega C. Magic-size semiconductor nanostructures: Where does the magic come from?[J]. ACS Mater. Au, 2022,2(3):237-249. doi: 10.1021/acsmaterialsau.1c00075
Bootharaju M S, Baek W, Lee S, Chang H G, Kim J H, Hyeon T. Magic-sized stoichiometric Ⅱ-Ⅵ nanoclusters[J]. Small, 2021,17(27)2002067. doi: 10.1002/smll.202002067
Yao Y, Lynch R, Robinson R D. Mass spectroscopy study of the intermediate magic-size cluster species during cooperative cation exchange[J]. J. Chem. Phys., 2023,159014704. doi: 10.1063/5.0151904
Jiang Z J, Kelley D F. Role of magic-sized clusters in the synthesis of CdSe nanorods[J]. ACS Nano, 2010,4(3):1561-1572. doi: 10.1021/nn100076f
Soloviev V, Eichhöfer A, Fenske D, Banin U. Molecular limit of a bulk semiconductor: Size dependence of the "band gap" in CdSe cluster molecules[J]. J. Am. Chem. Soc., 2000,122(11):2673-2674. doi: 10.1021/ja9940367
Peng Z A, Peng X G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth[J]. J. Am. Chem. Soc., 2002,124(13):3343-3353. doi: 10.1021/ja0173167
Palencia C, Yu K, Boldt K. The future of colloidal semiconductor magic-size clusters[J]. ACS Nano, 2020,14(2):1227-1235. doi: 10.1021/acsnano.0c00040
Wang F D, Wang Y Y, Liu Y H, Morrison P J, Loomis R A, Buhro W E. Two-dimensional semiconductor nanocrystals: Properties, templated formation, and magic-size nanocluster intermediates[J]. Accounts Chem. Res., 2015,48(1):13-21. doi: 10.1021/ar500286j
Cossairt B M, Owen J S. CdSe clusters: At the interface of small molecules and quantum dots[J]. Chem. Mater., 2011,23(12):3114-3119. doi: 10.1021/cm2008686
Pun A B, Mazzotti S, Mule A S, Norris D J. Understanding discrete growth in semiconductor nanocrystals: Nanoplatelets and magic-sized clusters[J]. Accounts Chem. Res., 2021,54(7):1545-1554. doi: 10.1021/acs.accounts.0c00859
Beecher A N, Yang X H, Palmer J H, LaGrassa A L, Juhas P, Billinge S J, Owen J S. Atomic structures and gram scale synthesis of three tetrahedral quantum dots[J]. J. Am. Chem. Soc., 2014,136(30):10645-10653. doi: 10.1021/ja503590h
Lee J, Yang J, Kwon S G, Hyeon T. Nonclassical nucleation and growth of inorganic nanoparticles[J]. Nat. Rev. Mater., 2016,1(8):1-16.
Yang J, Muckel F, Baek W, Fainblat R, Chang H, Bacher G, Hyeon T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters[J]. J. Am. Chem. Soc., 2017,139(19):6761-6770. doi: 10.1021/jacs.7b02953
Landes C, Braun M, Burda C, El-Sayed M A. Observation of large changes in the band gap absorption energy of small CdSe nanoparticles induced by the adsorption of a strong hole acceptor[J]. Nano Lett., 2001,1(11):667-670. doi: 10.1021/nl015619t
Singh V, More P V, Hemmer E, Mishra Y K, Khanna P K. Magic-sized CdSe nanoclusters: A review on synthesis, properties and white light potential[J]. Mater. Adv., 2021,2(4):1204-1228. doi: 10.1039/D0MA00921K
Kudera S, Zanella M, Giannini C, Rizzo A, Li Y Q, Gigli G, Cingolani R, Ciccarella G, Spahl W, Parak W J, Manna L. Sequential growth of magic-size CdSe nanocrystals[J]. Adv. Mater., 2007,19(4):548-552. doi: 10.1002/adma.200601015
Ouyang J, Zaman M B, Yan F J, Johnston D, Li G, Wu X, Leek D, Ratcliffe C I, Ripmeester J A, Yu K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses[J]. J. Phys. Chem. C, 2008,112(36):13805-13811. doi: 10.1021/jp803845n
Wegner K D, Häusler I, Knigge X, Hodoroaba V D, Emmerling F, Reiss P, Resch-Genger U. One-pot heat-up synthesis of ZnSe magic-sized clusters using thiol ligands[J]. Inorg. Chem., 2022,61(19):7207-7211. doi: 10.1021/acs.inorgchem.2c00041
Kelly C H W, Lein M. Choosing the right precursor for thermal decomposition solution-phase synthesis of iron nanoparticles: Tunable dissociation energies of ferrocene derivatives[J]. Phys. Chem. Chem. Phys., 2016,18(47):32448-32457. doi: 10.1039/C6CP06921E
Li Y, Zhang M, He L, Rowell N, Kreouzis T, Zhang C C, Wang S L, Luan C R, Chen X Q, Zhang S J, Yu K. Manipulating reaction intermediates to aqueous-phase ZnSe magic-size clusters and quantum dots at room temperature[J]. Angew. Chem. Int. Ed., 2022,61(39)e202209615. doi: 10.1002/anie.202209615
Park Y S, Dmytruk A, Dmitruk I, Kasuya A, Takeda M, Ohuchi N, Okamoto Y, Kaji N, Tokeshi M, Baba Y. Size-selective growth and stabilization of small CdSe nanoparticles in aqueous solution[J]. ACS Nano, 2010,4(1):121-128. doi: 10.1021/nn901570m
Politi M, Baum F, Vaddi K, Antonio E, Vasquez J, Bishop B P, Peek N, Holmberg V C, Pozzo L D. A high-throughput workflow for the synthesis of CdSe nanocrystals using a sonochemical materials acceleration platform[J]. Digital Discovery, 2023,2(4):1042-1057. doi: 10.1039/D3DD00033H
Lin Z H, Zhang X, Zhang X, Song Q Q, Li Y. CdTe magic-size cluster synthesis via a cation exchange method and conversion mechanism[J]. Nanoscale, 2023,15(39):16049-16055. doi: 10.1039/D3NR02938G
Ma F Y, Abboud K A, Zeng C J. Precision synthesis of a CdSe semiconductor nanocluster via cation exchange[J]. Nat. Synth., 2023,2(10):949-959. doi: 10.1038/s44160-023-00330-6
Zhu D K, Hui J, Rowell N, Liu Y Y, Chen Q Y, Steegemans T, Fan H S, Zhang M, Yu K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters[J]. J. Phys. Chem. Lett., 2018,9(11):2818-2824. doi: 10.1021/acs.jpclett.8b01109
Mech S A, Ma F Y, Zeng C J. Mapping the reaction zones for CdTe magic-sized clusters and their emission properties[J]. Nanoscale, 2023,15(1):114-121. doi: 10.1039/D2NR05808A
Kirschbaum S E K, Baeumner A J. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices[J]. Anal. Bioanal. Chem., 2015,407:3911-3926. doi: 10.1007/s00216-015-8557-x
Hu L, Xu G. Applications and trends in electrochemiluminescence[J]. Chem. Soc. Rev., 2010,39(8):3275-3304. doi: 10.1039/b923679c
Ge J J, Liang J, Chen X F, Deng Y L, Xiao P W, Zhu J J, Wang Y Y. Designing inorganically functionalized magic-size Ⅱ-Ⅵ clusters and unraveling their surface states[J]. Chem. Sci., 2022,13(40):11755-11763. doi: 10.1039/D2SC03868D
Williamson C B, Nevers D R, Nelson A, Hadar I, Banin U, Hanrath T, Robinson R D. Chemically reversible isomerization of inorganic clusters[J]. Science, 2019,363(6428):731-735. doi: 10.1126/science.aau9464
Nevers D R, Williamson C B, Savitzky B H, Hadar I, Banin U, Kourkoutis L F, Hanrath T, Robinson R D. Mesophase formation stabilizes high-purity magic-sized clusters[J]. J. Am. Chem. Soc., 2018,140(10):3652-3662. doi: 10.1021/jacs.7b12175
Palencia C, Seher R, Krohn J, Thiel F, Lehmkühler F, Weller H. An in situ and real time study of the formation of CdSe NCs[J]. Nanoscale, 2020,12(45):22928-22934. doi: 10.1039/D0NR05879C
Rockenberger J, Tröger L, Kornowski A, Vossmeyer T, Eychmüller A, Feldhaus J, Weller H. EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles[J]. J. Phys. Chem. B, 1997,101(14):2691-2701. doi: 10.1021/jp963266u
Kasuya A, Sivamohan R, Barnakov Y A, Dmitruk I M, Nirasawa T, Romanyuk V R, Kumar V, Mamykin S V, Tohji K, Jeyadevan B, Shinoda K, Kudo T, Terasaki , O , Liu Z, Belosludov R V, Sundararajan V, Kawazoe Y. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry[J]. Nat. Mater., 2004,3(2):99-102. doi: 10.1038/nmat1056
Wang Y J, Huang Y, Yi H Y, Li Y H, Jiang J H, Li Z. Ligand-induced divergent evolution of ZnSe magic sized clusters[J]. Inorg. Chem., 2023,63(2):928-933.
Friedfeld M R, Stein J L, Cossairt B M. Main-group-semiconductor cluster molecules as synthetic intermediates to nanostructures[J]. Inorg. Chem., 2017,56(15):8689-8697. doi: 10.1021/acs.inorgchem.7b00291
Lee K, Deng G, Bootharaju M S, Hyeon T. Synthesis, assembly, and applications of magic-sized semiconductor (CdSe)13 cluster[J]. Accounts Chem. Res., 2023,56(9):1118-1127. doi: 10.1021/acs.accounts.3c00061
Soloviev V, Eichhöfer A, Fenske D, Banin U. Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules[J]. J. Am. Chem. Soc., 2001,123(10):2354-2364. doi: 10.1021/ja003598j
Ripberger H H, Schnitzenbaumer K J, Nguyen L K, Ladd D M, Levine K R, Dayton D G, Toney M F, Cossairt , B M. Navigating the potential energy surface of CdSe magic-sized clusters: Synthesis and interconversion of atomically precise nanocrystal polymorphs[J]. J. Am. Chem. Soc., 2023,145(50):27480-27492. doi: 10.1021/jacs.3c08897
Wang Y Y, Zhou Y, Zhang Y, Buhro W E. Magic-size Ⅱ-Ⅵ nanoclusters as synthons for flat colloidal nanocrystals[J]. Inorg. Chem., 2015,54(3):1165-1177. doi: 10.1021/ic502637q
Zhou Y, Jiang R D, Wang Y Y, Rohrs H W, Buhro W E. Isolation of amine derivatives of (ZnSe)34 and (CdTe)34 spectroscopic comparisons of the (Ⅱ-Ⅵ)13 and (Ⅱ-Ⅵ)34 magic-size nanoclusters[J]. Inorg. Chem., 2019,58(3):1815-1825. doi: 10.1021/acs.inorgchem.8b02489
Wang Y Y, Liu Y H, Zhang Y, Kowalski P J, Rohrs H W, Buhro W E. Preparation of primary amine derivatives of the magic-size nanocluster (CdSe)13[J]. Inorg. Chem., 2013,52(6):2933-2938. doi: 10.1021/ic302327p
Wang Y Y, Liu Y H, Zhang Y, Wang F D, Kowalski P J, Rohrs H W, Loomis R A, Gross M L, Buhro W E. Isolation of the magic-size CdSe nanoclusters[(CdSe)13(n-octylamine)13] and[(CdSe)13(oleylamine)13][J]. Angew. Chem. Int. Ed., 2012,51(25):6154-6157. doi: 10.1002/anie.201202380
Dolai S, Nimmala P R, Mandal M, Muhoberac B B, Dria K, Dass A, Sardar R. Isolation of bright blue light-emitting CdSe nanocrystals with 6.5 kDa core in gram scale: High photoluminescence efficiency controlled by surface ligand chemistry[J]. Chem. Mater., 2014,26(2):1278-1285. doi: 10.1021/cm403950f
Yang J, Fainblat R, Kwon S G, Muckel F, Yu J H, Terlinden H, Kim B H, Iavarone D, Choi M K, Kim I Y, Park I, Hong H K, Lee J, Son J S, Lee Z, Kang K, Hwang S J, Bacher G, Hyeon T. Route to the smallest doped semiconductor: Mn2+-doped (CdSe)13 clusters[J]. J. Am. Chem. Soc., 2015,137(40):12776-12779. doi: 10.1021/jacs.5b07888
Yang J, Muckel F, Choi B K, Lorenz S, Kim I Y, Ackermann J, Chang H, Czerney T, Kale V S, Hwang S J. Co2+-doping of magic-sized CdSe clusters: Structural insights via ligand field transitions[J]. Nano Lett., 2018,18(11):7350-7357. doi: 10.1021/acs.nanolett.8b03627
Dmitruk I, Belosludov R V, Dmytruk A, Noda Y, Barnakov Y, Park Y S, Kasuya A. Experimental and computational studies of the structure of CdSe magic-size clusters[J]. J. Phys. Chem. A, 2020,124(17):3398-3406. doi: 10.1021/acs.jpca.0c00782
Bootharaju M S, Baek W, Deng G C, Singh K, Voznyy O, Zheng N F, Hyeon T. Structure of a subnanometer-sized semiconductor Cd14Se13 cluster[J]. Chem, 2022,8(11):2978-2989. doi: 10.1016/j.chempr.2022.06.025
Hsieh T E, Yang T W, Hsieh C Y, Huang S J, Yeh Y Q, Chen C H, Li E Y, Liu Y H. Unraveling the structure of magic-size (CdSe)13 cluster pairs[J]. Chem. Mater., 2018,30(15):5468-5477. doi: 10.1021/acs.chemmater.8b02468
Liu H T, Owen J S, Alivisatos A P. Mechanistic study of precursor evolution in colloidal group Ⅱ-Ⅵ semiconductor nanocrystal synthesis[J]. J. Am. Chem. Soc., 2007,129(2):305-312. doi: 10.1021/ja0656696
Rempel J Y, Bawendi M G, Jensen K F. Insights into the kinetics of semiconductor nanocrystal nucleation and growth[J]. J. Am. Chem. Soc., 2009,131(12):4479-4489. doi: 10.1021/ja809156t
Owen J S, Chan E M, Liu H T, Alivisatos A P. Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals[J]. J. Am. Chem. Soc., 2010,132(51):18206-18213. doi: 10.1021/ja106777j
Yu K, Liu X Y, Qi T, Yang H Q, Whitfield D M, Chen Q Y, Huisman E J C, Hu C W. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals[J]. Nat. Commun., 2016,7(1)12223. doi: 10.1038/ncomms12223
Cunningham P D, Coropceanu I, Mulloy K, Cho W, Talapin D V. Quantized reaction pathways for solution synthesis of colloidal ZnSe nanostructures: A connection between clusters, nanowires, and two-dimensional nanoplatelets[J]. ACS Nano, 2020,14(4):3847-3857. doi: 10.1021/acsnano.9b09051
Palencia C, Yu K, Boldt K. The future of colloidal semiconductor magic-size clusters[J]. ACS Nano, 2020,14(2):1227-1235. doi: 10.1021/acsnano.0c00040
Wang Y Y, Zhang Y, Wang F D, Giblin D E, Hoy J, Rohrs H W, Loomis R A, Buhro W E. The magic-size nanocluster (CdSe)34 as a low-temperature nucleant for cadmium selenide nanocrystals; room-temperature growth of crystalline quantum platelets[J]. Chem. Mater., 2014,26:2233-2243. doi: 10.1021/cm404068e
Herron N, Suna A, Wang Y. Synthesis of ≈ 10 Å thiophenolate-capped CdS clusters[J]. Observation of a sharp absorption peak. J. Chem. Soc.-Dalton Trans., 1992,15:2329-2335.
Ptatschek V, Schmidt T, Lerch M, Müller G, Spanhel L, Emmerling A, Fricke J, Foitzik A H, Langer E. Quantized aggregation phenomena in Ⅱ-Ⅵ-semiconductor colloids[J]. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys., 1998,102(1):85-95. doi: 10.1002/bbpc.19981020111
Mule A S, Mazzotti S, Rossinelli A A, Aellen M, Prins P T, van der Bok J C, Solari S F, Glauser Y M, Kumar P V, Riedinger A, Norris D J. Unraveling the growth mechanism of magic-sized semiconductor nanocrystals[J]. J. Am. Chem. Soc., 2021,143(4):2037-2048. doi: 10.1021/jacs.0c12185
Yang X H, Masadeh A S, McBride J R, Božin E S, Rosenthal S J, Billinge S J L. Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis[J]. Phys. Chem. Chem. Phys., 2013,15(22):8480-8486. doi: 10.1039/c3cp00111c
Deng Y L, Liang J, Kong X K, Xiao P W, Zhou Y, Wang Y Y. Unraveling the transformation pathways in semiconductor clusters by studying the formation of spectroscopically pure (CdS)13 magic-size clusters[J]. Chem. Mater., 2023,35(6):2463-2471. doi: 10.1021/acs.chemmater.2c03659
Li Y, Rowell N, Luan C R, Zhang M, Chen X Q, Yu K. A two-pathway model for the evolution of colloidal compound semiconductor quantum dots and magic-size clusters[J]. Adv. Mater., 2022,342107940. doi: 10.1002/adma.202107940
Liu M Y, Wang K, Wang L X, Han S, Fan H S, Rowell N, Ripmeester J A, Renoud R, Bian F G, Zeng J R, Yu K. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots[J]. Nat. Commun., 2017,8(1)15467. doi: 10.1038/ncomms15467
Yang Y S, Li Y, Luan C R, Rowell N, Wang S L, Zhang C C, Huang W, Chen X Q, Yu K. Transformation pathways in colloidal CdTeSe magic-size clusters[J]. Angew. Chem. Int. Ed., 2021,134(7)e202114551.
Han H X, Yao Y, Robinson R D. Interplay between chemical transformations and atomic structure in nanocrystals and nanoclusters[J]. Acc. Chem. Res., 2021,54(3):509-519. doi: 10.1021/acs.accounts.0c00704
Groeneveld E, van Berkum S, Meijerink A, Donegá C D. Growth and stability of ZnTe magic-size nanocrystals[J]. Small, 2011,7(9):1247-1256. doi: 10.1002/smll.201002316
Zhang B W, Zhu T T, Ou M Y, Rowell N, Fan H S, Han J, Tan L, Dove M T, Ren Y, Zuo X B. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters[J]. Nat. Commun., 2018,9(1)2499. doi: 10.1038/s41467-018-04842-0
Van Embden J, Mulvaney P. Nucleation and growth of CdSe nanocrystals in a binary ligand system[J]. Langmuir, 2005,21(22):10226-10233. doi: 10.1021/la051081l
Choudhuri I, Truhlar D G. Photogenerated charge separation in a CdSe nanocluster encapsulated in a metal-organic framework for improved photocatalysis[J]. J. Phys. Chem. C, 2020,124(16):8504-8513. doi: 10.1021/acs.jpcc.0c00007
Joo J, Son J S, Kwon S G, Yu J H, Hyeon T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons[J]. J. Am. Chem. Soc., 2006,128(17):5632-5633. doi: 10.1021/ja0601686
Zhou Y, Wang F D, Buhro W E. Reactivity of magic-size nanoclusters (CdSe)13 and (CdTe)13 with acids: Rapid, low-temperature formation of flat colloidal nanocrystals[J]. Chem. Mater., 2020,32:8350-8360. doi: 10.1021/acs.chemmater.0c02205
Baek W, Bootharaju M S, Lorenz S, Lee S, Stolte S, Fainblat R, Bacher G, Hyeon T. Nanoconfinement-controlled synthesis of highly active, multinary nanoplatelet catalysts from lamellar magic-sized nanocluster templates[J]. Adv. Funct. Mater., 2021,31(49)2107447. doi: 10.1002/adfm.202107447
Ning J J, Liu J, Levi-Kalisman Y, Frenkel A I, Banin U. Controlling anisotropic growth of colloidal ZnSe nanostructures[J]. J. Am. Chem. Soc., 2018,140:14627-14637. doi: 10.1021/jacs.8b05941
Han H X, Kallakuri S, Yao Y, Williamson C B, Nevers D R, Savitzky B H, Skye R S, Xu M Y, Voznyy O, Dshemuchadse J. Multiscale hierarchical structures from a nanocluster mesophase[J]. Nat. Mater., 2022,21:518-525. doi: 10.1038/s41563-022-01223-3
Yao Y, Ugras T J, Meyer T, Dykes M, Wang D, Arbe A, Bals S, Kahr B, Robinson R D. Extracting pure circular dichroism from hierarchically structured CdS magic cluster films[J]. ACS Nano, 2022,16(12):20457-20469. doi: 10.1021/acsnano.2c06730
Han H X, Hirsch K, Hanrath T, Robinson R D, Shepherd L M. The direct electrospinning and manipulation of magic-sized cluster quantum dots[J]. Adv. Eng. Mater., 2021,232100661. doi: 10.1002/adem.202100661
Liu Y Y, Rowell N, Willis M, Zhang M, Wang S L, Fan H S, Huang W, Chen X Q, Yu K. Photoluminescent colloidal nanohelices self-assembled from CdSe magic-size clusters via nanoplatelets[J]. J. Phys. Chem. Lett., 2019,10(11):2794-2801. doi: 10.1021/acs.jpclett.9b00838
Wang P, Yang Q Q, Xu C, Wang B, Wang H, Zhang J D, Jin Y D. Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution[J]. Nano Res., 2021,15(4):3106-3113.
Baek W, Bootharaju M S, Walsh K M, Lee S, Gamelin D R, Hyeon T. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters[J]. Nat. Mater., 2021,20(5):650-657. doi: 10.1038/s41563-020-00880-6
Pun A B, Mule A S, Held J T, Norris D J. Core/shell magic-sized CdSe nanocrystals[J]. Nano Lett., 2021,21(18):7651-7658. doi: 10.1021/acs.nanolett.1c02412
Schreuder M A, Xiao K, Ivanov I N, Weiss S M, Rosenthal S J. White light-emitting diodes based on ultrasmall CdSe nanocrystal electroluminescence[J]. Nano Lett., 2010,10(2):573-576. doi: 10.1021/nl903515g
Bowers M J, Mcbride J R, Rosenthal S J. White-light emission from magic-sized cadmium selenide nanocrystals[J]. J. Am. Chem. Soc., 2005,127(44):15378-15379. doi: 10.1021/ja055470d
YANG J, Li Z H, FENG W, LI F Y. Checking of non-radiative energy transfer process in nanocrystal self-assembly structure[J]. Chinese J. Inorg. Chem., 2021,37(12):2158-2166.
YU Y Y, GAO X Q, LIAO C, CUI Y P, ZHANG J Y. Electroluminescent characteristics of Mn-doped CdS/ZnS core/shell nanocrystals[J]. Chinese J. Inorg. Chem., 2015,31(5):895-900.
HU X D, PAN L J, ZHANG H Q. Solvothermal synthesis of CdS nanocrystals with organic sulphur source[J]. Chinese J. Inorg. Chem., 2009,25(6):1011-1017.
Mao L Y, Yang S X, Cheng X Y, Liu S L, Chen D Y, Zhou Z, Li M, Pei C L. One-year observation of the mixing states of oxygenated organics-containing single particles in Guangzhou, China[J]. Front. Environ. Sci. Eng., 2024,18(5)64. doi: 10.1007/s11783-024-1824-3
Tutton C G, Young S B, Habib K. Pre-processing of e-waste in Canada: Case of a facility responding to changing material composition[J]. Resources, Environment and Sustainability, 2022,9100069. doi: 10.1016/j.resenv.2022.100069
Guo J, Ali S, Xu M. Recycling is not enough to make the world a greener place: Prospects for the circular economy[J]. Green Carbon, 2023,1(2):150-153. doi: 10.1016/j.greenca.2023.10.006
Huang H, Ma R, Ren H Q. Scientific and technological innovations of wastewater treatment in China[J]. Front. Environ. Sci. Eng., 2024,18(6)72. doi: 10.1007/s11783-024-1832-3
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Peiqi Gao , Jiao Zheng , LiMiao Chen , Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Intermediate phase (left), aggregate of nanofibers (middle), MSCs(right).