Citation: Huan LI, Shengyan WANG, Long Zhang, Yue CAO, Xiaohan YANG, Ziliang WANG, Wenjuan ZHU, Wenlei ZHU, Yang ZHOU. Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088 shu

Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors

Figures(14)

  • Magic-size clusters (MSCs) have attracted much attention in recent years due to their atomically precise and specialized structures; and their unique electronic and optical properties. They play an important role in the formation and growth of semiconductor nanocrystals. An in-depth understanding of the precise chemical composition, atomic structures, and growth mechanisms of MSCs is essential for researchers to explore their properties from the molecular to the macroscopic level. This review details the formation and growth mechanisms of semiconductor MSCs and explores effective strategies to regulate the morphology of these clusters. At the same time, this paper also combs through the current research status of non-stoichiometric and stoichiometric MSCs. On this basis, the review summarizes the main technical tools currently used to characterize MSCs and discusses potential non-destructive detection techniques. Finally, the paper also outlines the applications of MSCs in various fields and looks forward to future research directions.
  • 加载中
    1. [1]

      Reiss P, Carrière M, Lincheneau C, Vaure L, Tamang S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials[J]. Chem. Rev., 2016,116(18):10731-10819. doi: 10.1021/acs.chemrev.6b00116

    2. [2]

      Anikeeva P O, Halpert J E, Bawendi M G, Bulović V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer[J]. Nano Lett., 2007,7(8):2196-2200. doi: 10.1021/nl0703424

    3. [3]

      de Mello Donegá C. Synthesis and properties of colloidal heteronanocrystals[J]. Chem. Soc. Rev., 2011,40(3):1512-1546. doi: 10.1039/C0CS00055H

    4. [4]

      Yu S H, Antonietti M. Creative and relevant materials innovation[J]. The Innovation Materials, 2023,1(1)100002. doi: 10.59717/j.xinn-mater.2023.100002

    5. [5]

      Gao Y H, Song T, Guo X L, Zhang Y, Yang Y. Electronic interaction and oxygen vacancy engineering of g-C3N4/α-Bi2O3 Z-scheme heterojunction for enhanced photocatalytic aerobic oxidative homo-/hetero-coupling of amines to imines in aqueous phase[J]. Green Carbon, 2023,1(2):105-117. doi: 10.1016/j.greenca.2023.09.004

    6. [6]

      Wang B, Hu X M, Sun F W, Yang Z, Huang W. Advanced strategic constructions of diketopyrrolopyrrole derivatives-based organic semiconducting phototheranostics[J]. Interdisciplinary Medicine, 2023,1(1)e20220010. doi: 10.1002/INMD.20220010

    7. [7]

      Niu F, Zhou F G, Wang Z X, Wei L, Hu J, Dong L, Ma Y F, Wang M, Jia S T, Chen X Y, Tong Z M. Synthesizing metal oxide semiconductors on doped Si/SiO2 flexible fiber substrates for wearable gas sensing[J]. Research, 2023,60100. doi: 10.34133/research.0100

    8. [8]

      Lin D G, Zhang W H, Yin H, Hu H X, Li Y, Zhang H, Wang L, Xie X M, Hu H G, Yan Y G, Ling H F, Liu J A, Qian Y, Tang L, Wang Y G, Dong C Y, Xie L H, Zhang H, Wang S S, Wei Y, Guo X F, Lu D, Huang W. Cross-scale synthesis of organic high-k semiconductors based on spiro-gridized nanopolymers[J]. Research, 2022. doi: 10.34133/2022/9820585

    9. [9]

      de Arquer F P G, Talapin D V, Klimov V I, Arakawa Y, Bayer M, Sargent E H. Semiconductor quantum dots: Technological progress and future challenges[J]. Science, 2021,373(6555)eaaz8541. doi: 10.1126/science.aaz8541

    10. [10]

      Zhang L X, Qi M Y, Tang Z R, Xu Y J. Heterostructure-engineered semiconductor quantum dots toward photocatalyzed-redox cooperative coupling reaction[J]. Research, 2023,60073. doi: 10.34133/research.0073

    11. [11]

      Yang W S, Jiao L, Liu W, Dai H Q. Manufacture of highly transparent and hazy cellulose nanofibril films via coating tempo-oxidized wood fibers[J]. Nanomaterials, 2019,9(1)107. doi: 10.3390/nano9010107

    12. [12]

      Cao C C, Cao X. Nanowire-based smart windows achieving dynamic solar radiation regulation[J]. The Innovation Materials, 2023,1(2)100024. doi: 10.59717/j.xinn-mater.2023.100024

    13. [13]

      Rabouw F T, de Mello Donega C. Excited-state dynamics in colloidal semiconductor nanocrystals[J]. Top. Curr. Chem., 2016,374(5)58. doi: 10.1007/s41061-016-0060-0

    14. [14]

      Cai M, Wei Y X, Li Y K, Li X, Wang S B, Shao G S, Zhang P. 2D semiconductor nanosheets for solar photocatalysis[J]. EcoEnergy, 2023,1(2):248-295. doi: 10.1002/ece2.16

    15. [15]

      Yu Y L, Xiong T, Guo Z F, Hou S J, Yang J H, Liu Y Y, Gu H G, Wei Z M. Wide-spectrum polarization-sensitive and fast-response photodetector based on 2D group Ⅳ-Ⅵ semiconductor tin selenide[J]. Fundamental Res., 2022,2(6):985-992. doi: 10.1016/j.fmre.2022.02.008

    16. [16]

      Ummadisingu A, Meloni S, Mattoni A, Tress W, Grätzel M. Crystal-size-induced band gap tuning in perovskite films[J]. Angew. Chem. Int. Ed., 2021,60(39):21368-21376. doi: 10.1002/anie.202106394

    17. [17]

      Diroll B T, Guzelturk B, Po H, Dabard C, Fu N Y, Makke L, Lhuillier E, Ithurria S. 2D Ⅱ-Ⅵ semiconductor nanoplatelets: From material synthesis to optoelectronic integration[J]. Chem. Rev., 2023,123(7):3543-3624. doi: 10.1021/acs.chemrev.2c00436

    18. [18]

      Goh E S M, Chen T P, Sun C Q, Liu Y C. Thickness effect on the band gap and optical properties of germanium thin films[J]. J. Appl. Phys., 2010,107(2)024305. doi: 10.1063/1.3291103

    19. [19]

      Raciti R, Bahariqushchi R, Summonte C, Aydinli A, Terrasi A, Mirabella S. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis[J]. J. Appl. Phys., 2017,121(23)230304.

    20. [20]

      Wang Z B, Zheng S, Teng Q, Li C H, Zhuang B, Zhang R D, Huang F, Chen D Q, Yuan F L. Opportunity of lead-free metal halide perovskites for electroluminescence[J]. The Innovation Materials, 2023,1(1)100015. doi: 10.59717/j.xinn-mater.2023.100015

    21. [21]

      Hu H P, Wang Y C, Fu C G, Zhao X B, Zhu T J. Achieving metal-like malleability and ductility in Ag2Te1-xSx inorganic thermoelectric semiconductors with high mobility[J]. Innovation-Amsterdam, 2022,3(6)100341.

    22. [22]

      Yu W L, Li F, Huang T, Li W, Wu T. Go beyond the limit: Rationally designed mixed-dimensional perovskite/semiconductor heterostructures and their applications[J]. Innovation-Amsterdam, 2023,4(1)100363.

    23. [23]

      Xiao Y H, Yao C H, Su C L, Liu B. Nanoclusters for photoelectrochemical water splitting: Bridging the photosensitizer and carrier transporter[J]. EcoEnergy, 2023,1(1):60-84. doi: 10.1002/ece2.6

    24. [24]

      Sivtsev V, Lapushkina E, Kovalev I, Guskov R, Popov M, Nemudry A. Microtubular solid oxide fuel cells with a two-layer LSCF/BSCFM5 cathode[J]. Green Carbon, 2023,1(2):154-159. doi: 10.1016/j.greenca.2023.11.002

    25. [25]

      Busatto S, de Mello Donega C. Magic-size semiconductor nanostructures: Where does the magic come from?[J]. ACS Mater. Au, 2022,2(3):237-249. doi: 10.1021/acsmaterialsau.1c00075

    26. [26]

      Bootharaju M S, Baek W, Lee S, Chang H G, Kim J H, Hyeon T. Magic-sized stoichiometric Ⅱ-Ⅵ nanoclusters[J]. Small, 2021,17(27)2002067. doi: 10.1002/smll.202002067

    27. [27]

      Yao Y, Lynch R, Robinson R D. Mass spectroscopy study of the intermediate magic-size cluster species during cooperative cation exchange[J]. J. Chem. Phys., 2023,159014704. doi: 10.1063/5.0151904

    28. [28]

      Jiang Z J, Kelley D F. Role of magic-sized clusters in the synthesis of CdSe nanorods[J]. ACS Nano, 2010,4(3):1561-1572. doi: 10.1021/nn100076f

    29. [29]

      Soloviev V, Eichhöfer A, Fenske D, Banin U. Molecular limit of a bulk semiconductor: Size dependence of the "band gap" in CdSe cluster molecules[J]. J. Am. Chem. Soc., 2000,122(11):2673-2674. doi: 10.1021/ja9940367

    30. [30]

      Peng Z A, Peng X G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes:  Nucleation and growth[J]. J. Am. Chem. Soc., 2002,124(13):3343-3353. doi: 10.1021/ja0173167

    31. [31]

      Palencia C, Yu K, Boldt K. The future of colloidal semiconductor magic-size clusters[J]. ACS Nano, 2020,14(2):1227-1235. doi: 10.1021/acsnano.0c00040

    32. [32]

      Wang F D, Wang Y Y, Liu Y H, Morrison P J, Loomis R A, Buhro W E. Two-dimensional semiconductor nanocrystals: Properties, templated formation, and magic-size nanocluster intermediates[J]. Accounts Chem. Res., 2015,48(1):13-21. doi: 10.1021/ar500286j

    33. [33]

      Cossairt B M, Owen J S. CdSe clusters: At the interface of small molecules and quantum dots[J]. Chem. Mater., 2011,23(12):3114-3119. doi: 10.1021/cm2008686

    34. [34]

      Pun A B, Mazzotti S, Mule A S, Norris D J. Understanding discrete growth in semiconductor nanocrystals: Nanoplatelets and magic-sized clusters[J]. Accounts Chem. Res., 2021,54(7):1545-1554. doi: 10.1021/acs.accounts.0c00859

    35. [35]

      Beecher A N, Yang X H, Palmer J H, LaGrassa A L, Juhas P, Billinge S J, Owen J S. Atomic structures and gram scale synthesis of three tetrahedral quantum dots[J]. J. Am. Chem. Soc., 2014,136(30):10645-10653. doi: 10.1021/ja503590h

    36. [36]

      Lee J, Yang J, Kwon S G, Hyeon T. Nonclassical nucleation and growth of inorganic nanoparticles[J]. Nat. Rev. Mater., 2016,1(8):1-16.

    37. [37]

      Yang J, Muckel F, Baek W, Fainblat R, Chang H, Bacher G, Hyeon T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters[J]. J. Am. Chem. Soc., 2017,139(19):6761-6770. doi: 10.1021/jacs.7b02953

    38. [38]

      Landes C, Braun M, Burda C, El-Sayed M A. Observation of large changes in the band gap absorption energy of small CdSe nanoparticles induced by the adsorption of a strong hole acceptor[J]. Nano Lett., 2001,1(11):667-670. doi: 10.1021/nl015619t

    39. [39]

      Singh V, More P V, Hemmer E, Mishra Y K, Khanna P K. Magic-sized CdSe nanoclusters: A review on synthesis, properties and white light potential[J]. Mater. Adv., 2021,2(4):1204-1228. doi: 10.1039/D0MA00921K

    40. [40]

      Kudera S, Zanella M, Giannini C, Rizzo A, Li Y Q, Gigli G, Cingolani R, Ciccarella G, Spahl W, Parak W J, Manna L. Sequential growth of magic-size CdSe nanocrystals[J]. Adv. Mater., 2007,19(4):548-552. doi: 10.1002/adma.200601015

    41. [41]

      Ouyang J, Zaman M B, Yan F J, Johnston D, Li G, Wu X, Leek D, Ratcliffe C I, Ripmeester J A, Yu K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses[J]. J. Phys. Chem. C, 2008,112(36):13805-13811. doi: 10.1021/jp803845n

    42. [42]

      Wegner K D, Häusler I, Knigge X, Hodoroaba V D, Emmerling F, Reiss P, Resch-Genger U. One-pot heat-up synthesis of ZnSe magic-sized clusters using thiol ligands[J]. Inorg. Chem., 2022,61(19):7207-7211. doi: 10.1021/acs.inorgchem.2c00041

    43. [43]

      Kelly C H W, Lein M. Choosing the right precursor for thermal decomposition solution-phase synthesis of iron nanoparticles: Tunable dissociation energies of ferrocene derivatives[J]. Phys. Chem. Chem. Phys., 2016,18(47):32448-32457. doi: 10.1039/C6CP06921E

    44. [44]

      Li Y, Zhang M, He L, Rowell N, Kreouzis T, Zhang C C, Wang S L, Luan C R, Chen X Q, Zhang S J, Yu K. Manipulating reaction intermediates to aqueous-phase ZnSe magic-size clusters and quantum dots at room temperature[J]. Angew. Chem. Int. Ed., 2022,61(39)e202209615. doi: 10.1002/anie.202209615

    45. [45]

      Park Y S, Dmytruk A, Dmitruk I, Kasuya A, Takeda M, Ohuchi N, Okamoto Y, Kaji N, Tokeshi M, Baba Y. Size-selective growth and stabilization of small CdSe nanoparticles in aqueous solution[J]. ACS Nano, 2010,4(1):121-128. doi: 10.1021/nn901570m

    46. [46]

      Politi M, Baum F, Vaddi K, Antonio E, Vasquez J, Bishop B P, Peek N, Holmberg V C, Pozzo L D. A high-throughput workflow for the synthesis of CdSe nanocrystals using a sonochemical materials acceleration platform[J]. Digital Discovery, 2023,2(4):1042-1057. doi: 10.1039/D3DD00033H

    47. [47]

      Lin Z H, Zhang X, Zhang X, Song Q Q, Li Y. CdTe magic-size cluster synthesis via a cation exchange method and conversion mechanism[J]. Nanoscale, 2023,15(39):16049-16055. doi: 10.1039/D3NR02938G

    48. [48]

      Ma F Y, Abboud K A, Zeng C J. Precision synthesis of a CdSe semiconductor nanocluster via cation exchange[J]. Nat. Synth., 2023,2(10):949-959. doi: 10.1038/s44160-023-00330-6

    49. [49]

      Zhu D K, Hui J, Rowell N, Liu Y Y, Chen Q Y, Steegemans T, Fan H S, Zhang M, Yu K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters[J]. J. Phys. Chem. Lett., 2018,9(11):2818-2824. doi: 10.1021/acs.jpclett.8b01109

    50. [50]

      Mech S A, Ma F Y, Zeng C J. Mapping the reaction zones for CdTe magic-sized clusters and their emission properties[J]. Nanoscale, 2023,15(1):114-121. doi: 10.1039/D2NR05808A

    51. [51]

      Kirschbaum S E K, Baeumner A J. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices[J]. Anal. Bioanal. Chem., 2015,407:3911-3926. doi: 10.1007/s00216-015-8557-x

    52. [52]

      Hu L, Xu G. Applications and trends in electrochemiluminescence[J]. Chem. Soc. Rev., 2010,39(8):3275-3304. doi: 10.1039/b923679c

    53. [53]

      Ge J J, Liang J, Chen X F, Deng Y L, Xiao P W, Zhu J J, Wang Y Y. Designing inorganically functionalized magic-size Ⅱ-Ⅵ clusters and unraveling their surface states[J]. Chem. Sci., 2022,13(40):11755-11763. doi: 10.1039/D2SC03868D

    54. [54]

      Williamson C B, Nevers D R, Nelson A, Hadar I, Banin U, Hanrath T, Robinson R D. Chemically reversible isomerization of inorganic clusters[J]. Science, 2019,363(6428):731-735. doi: 10.1126/science.aau9464

    55. [55]

      Nevers D R, Williamson C B, Savitzky B H, Hadar I, Banin U, Kourkoutis L F, Hanrath T, Robinson R D. Mesophase formation stabilizes high-purity magic-sized clusters[J]. J. Am. Chem. Soc., 2018,140(10):3652-3662. doi: 10.1021/jacs.7b12175

    56. [56]

      Palencia C, Seher R, Krohn J, Thiel F, Lehmkühler F, Weller H. An in situ and real time study of the formation of CdSe NCs[J]. Nanoscale, 2020,12(45):22928-22934. doi: 10.1039/D0NR05879C

    57. [57]

      Rockenberger J, Tröger L, Kornowski A, Vossmeyer T, Eychmüller A, Feldhaus J, Weller H. EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles[J]. J. Phys. Chem. B, 1997,101(14):2691-2701. doi: 10.1021/jp963266u

    58. [58]

      Kasuya A, Sivamohan R, Barnakov Y A, Dmitruk I M, Nirasawa T, Romanyuk V R, Kumar V, Mamykin S V, Tohji K, Jeyadevan B, Shinoda K, Kudo T, Terasaki , O , Liu Z, Belosludov R V, Sundararajan V, Kawazoe Y. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry[J]. Nat. Mater., 2004,3(2):99-102. doi: 10.1038/nmat1056

    59. [59]

      Wang Y J, Huang Y, Yi H Y, Li Y H, Jiang J H, Li Z. Ligand-induced divergent evolution of ZnSe magic sized clusters[J]. Inorg. Chem., 2023,63(2):928-933.

    60. [60]

      Friedfeld M R, Stein J L, Cossairt B M. Main-group-semiconductor cluster molecules as synthetic intermediates to nanostructures[J]. Inorg. Chem., 2017,56(15):8689-8697. doi: 10.1021/acs.inorgchem.7b00291

    61. [61]

      Lee K, Deng G, Bootharaju M S, Hyeon T. Synthesis, assembly, and applications of magic-sized semiconductor (CdSe)13 cluster[J]. Accounts Chem. Res., 2023,56(9):1118-1127. doi: 10.1021/acs.accounts.3c00061

    62. [62]

      Soloviev V, Eichhöfer A, Fenske D, Banin U. Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules[J]. J. Am. Chem. Soc., 2001,123(10):2354-2364. doi: 10.1021/ja003598j

    63. [63]

      Ripberger H H, Schnitzenbaumer K J, Nguyen L K, Ladd D M, Levine K R, Dayton D G, Toney M F, Cossairt , B M. Navigating the potential energy surface of CdSe magic-sized clusters: Synthesis and interconversion of atomically precise nanocrystal polymorphs[J]. J. Am. Chem. Soc., 2023,145(50):27480-27492. doi: 10.1021/jacs.3c08897

    64. [64]

      Wang Y Y, Zhou Y, Zhang Y, Buhro W E. Magic-size Ⅱ-Ⅵ nanoclusters as synthons for flat colloidal nanocrystals[J]. Inorg. Chem., 2015,54(3):1165-1177. doi: 10.1021/ic502637q

    65. [65]

      Zhou Y, Jiang R D, Wang Y Y, Rohrs H W, Buhro W E. Isolation of amine derivatives of (ZnSe)34 and (CdTe)34 spectroscopic comparisons of the (Ⅱ-Ⅵ)13 and (Ⅱ-Ⅵ)34 magic-size nanoclusters[J]. Inorg. Chem., 2019,58(3):1815-1825. doi: 10.1021/acs.inorgchem.8b02489

    66. [66]

      Wang Y Y, Liu Y H, Zhang Y, Kowalski P J, Rohrs H W, Buhro W E. Preparation of primary amine derivatives of the magic-size nanocluster (CdSe)13[J]. Inorg. Chem., 2013,52(6):2933-2938. doi: 10.1021/ic302327p

    67. [67]

      Wang Y Y, Liu Y H, Zhang Y, Wang F D, Kowalski P J, Rohrs H W, Loomis R A, Gross M L, Buhro W E. Isolation of the magic-size CdSe nanoclusters[(CdSe)13(n-octylamine)13] and[(CdSe)13(oleylamine)13][J]. Angew. Chem. Int. Ed., 2012,51(25):6154-6157. doi: 10.1002/anie.201202380

    68. [68]

      Dolai S, Nimmala P R, Mandal M, Muhoberac B B, Dria K, Dass A, Sardar R. Isolation of bright blue light-emitting CdSe nanocrystals with 6.5 kDa core in gram scale: High photoluminescence efficiency controlled by surface ligand chemistry[J]. Chem. Mater., 2014,26(2):1278-1285. doi: 10.1021/cm403950f

    69. [69]

      Yang J, Fainblat R, Kwon S G, Muckel F, Yu J H, Terlinden H, Kim B H, Iavarone D, Choi M K, Kim I Y, Park I, Hong H K, Lee J, Son J S, Lee Z, Kang K, Hwang S J, Bacher G, Hyeon T. Route to the smallest doped semiconductor: Mn2+-doped (CdSe)13 clusters[J]. J. Am. Chem. Soc., 2015,137(40):12776-12779. doi: 10.1021/jacs.5b07888

    70. [70]

      Yang J, Muckel F, Choi B K, Lorenz S, Kim I Y, Ackermann J, Chang H, Czerney T, Kale V S, Hwang S J. Co2+-doping of magic-sized CdSe clusters: Structural insights via ligand field transitions[J]. Nano Lett., 2018,18(11):7350-7357. doi: 10.1021/acs.nanolett.8b03627

    71. [71]

      Dmitruk I, Belosludov R V, Dmytruk A, Noda Y, Barnakov Y, Park Y S, Kasuya A. Experimental and computational studies of the structure of CdSe magic-size clusters[J]. J. Phys. Chem. A, 2020,124(17):3398-3406. doi: 10.1021/acs.jpca.0c00782

    72. [72]

      Bootharaju M S, Baek W, Deng G C, Singh K, Voznyy O, Zheng N F, Hyeon T. Structure of a subnanometer-sized semiconductor Cd14Se13 cluster[J]. Chem, 2022,8(11):2978-2989. doi: 10.1016/j.chempr.2022.06.025

    73. [73]

      Hsieh T E, Yang T W, Hsieh C Y, Huang S J, Yeh Y Q, Chen C H, Li E Y, Liu Y H. Unraveling the structure of magic-size (CdSe)13 cluster pairs[J]. Chem. Mater., 2018,30(15):5468-5477. doi: 10.1021/acs.chemmater.8b02468

    74. [74]

      Liu H T, Owen J S, Alivisatos A P. Mechanistic study of precursor evolution in colloidal group Ⅱ-Ⅵ semiconductor nanocrystal synthesis[J]. J. Am. Chem. Soc., 2007,129(2):305-312. doi: 10.1021/ja0656696

    75. [75]

      Rempel J Y, Bawendi M G, Jensen K F. Insights into the kinetics of semiconductor nanocrystal nucleation and growth[J]. J. Am. Chem. Soc., 2009,131(12):4479-4489. doi: 10.1021/ja809156t

    76. [76]

      Owen J S, Chan E M, Liu H T, Alivisatos A P. Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals[J]. J. Am. Chem. Soc., 2010,132(51):18206-18213. doi: 10.1021/ja106777j

    77. [77]

      Yu K, Liu X Y, Qi T, Yang H Q, Whitfield D M, Chen Q Y, Huisman E J C, Hu C W. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals[J]. Nat. Commun., 2016,7(1)12223. doi: 10.1038/ncomms12223

    78. [78]

      Cunningham P D, Coropceanu I, Mulloy K, Cho W, Talapin D V. Quantized reaction pathways for solution synthesis of colloidal ZnSe nanostructures: A connection between clusters, nanowires, and two-dimensional nanoplatelets[J]. ACS Nano, 2020,14(4):3847-3857. doi: 10.1021/acsnano.9b09051

    79. [79]

      Palencia C, Yu K, Boldt K. The future of colloidal semiconductor magic-size clusters[J]. ACS Nano, 2020,14(2):1227-1235. doi: 10.1021/acsnano.0c00040

    80. [80]

      Wang Y Y, Zhang Y, Wang F D, Giblin D E, Hoy J, Rohrs H W, Loomis R A, Buhro W E. The magic-size nanocluster (CdSe)34 as a low-temperature nucleant for cadmium selenide nanocrystals; room-temperature growth of crystalline quantum platelets[J]. Chem. Mater., 2014,26:2233-2243. doi: 10.1021/cm404068e

    81. [81]

      Herron N, Suna A, Wang Y. Synthesis of ≈ 10 Å thiophenolate-capped CdS clusters[J]. Observation of a sharp absorption peak. J. Chem. Soc.-Dalton Trans., 1992,15:2329-2335.

    82. [82]

      Ptatschek V, Schmidt T, Lerch M, Müller G, Spanhel L, Emmerling A, Fricke J, Foitzik A H, Langer E. Quantized aggregation phenomena in Ⅱ-Ⅵ-semiconductor colloids[J]. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys., 1998,102(1):85-95. doi: 10.1002/bbpc.19981020111

    83. [83]

      Mule A S, Mazzotti S, Rossinelli A A, Aellen M, Prins P T, van der Bok J C, Solari S F, Glauser Y M, Kumar P V, Riedinger A, Norris D J. Unraveling the growth mechanism of magic-sized semiconductor nanocrystals[J]. J. Am. Chem. Soc., 2021,143(4):2037-2048. doi: 10.1021/jacs.0c12185

    84. [84]

      Yang X H, Masadeh A S, McBride J R, Božin E S, Rosenthal S J, Billinge S J L. Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis[J]. Phys. Chem. Chem. Phys., 2013,15(22):8480-8486. doi: 10.1039/c3cp00111c

    85. [85]

      Deng Y L, Liang J, Kong X K, Xiao P W, Zhou Y, Wang Y Y. Unraveling the transformation pathways in semiconductor clusters by studying the formation of spectroscopically pure (CdS)13 magic-size clusters[J]. Chem. Mater., 2023,35(6):2463-2471. doi: 10.1021/acs.chemmater.2c03659

    86. [86]

      Li Y, Rowell N, Luan C R, Zhang M, Chen X Q, Yu K. A two-pathway model for the evolution of colloidal compound semiconductor quantum dots and magic-size clusters[J]. Adv. Mater., 2022,342107940. doi: 10.1002/adma.202107940

    87. [87]

      Liu M Y, Wang K, Wang L X, Han S, Fan H S, Rowell N, Ripmeester J A, Renoud R, Bian F G, Zeng J R, Yu K. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots[J]. Nat. Commun., 2017,8(1)15467. doi: 10.1038/ncomms15467

    88. [88]

      Yang Y S, Li Y, Luan C R, Rowell N, Wang S L, Zhang C C, Huang W, Chen X Q, Yu K. Transformation pathways in colloidal CdTeSe magic-size clusters[J]. Angew. Chem. Int. Ed., 2021,134(7)e202114551.

    89. [89]

      Han H X, Yao Y, Robinson R D. Interplay between chemical transformations and atomic structure in nanocrystals and nanoclusters[J]. Acc. Chem. Res., 2021,54(3):509-519. doi: 10.1021/acs.accounts.0c00704

    90. [90]

      Groeneveld E, van Berkum S, Meijerink A, Donegá C D. Growth and stability of ZnTe magic-size nanocrystals[J]. Small, 2011,7(9):1247-1256. doi: 10.1002/smll.201002316

    91. [91]

      Zhang B W, Zhu T T, Ou M Y, Rowell N, Fan H S, Han J, Tan L, Dove M T, Ren Y, Zuo X B. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters[J]. Nat. Commun., 2018,9(1)2499. doi: 10.1038/s41467-018-04842-0

    92. [92]

      Van Embden J, Mulvaney P. Nucleation and growth of CdSe nanocrystals in a binary ligand system[J]. Langmuir, 2005,21(22):10226-10233. doi: 10.1021/la051081l

    93. [93]

      Choudhuri I, Truhlar D G. Photogenerated charge separation in a CdSe nanocluster encapsulated in a metal-organic framework for improved photocatalysis[J]. J. Phys. Chem. C, 2020,124(16):8504-8513. doi: 10.1021/acs.jpcc.0c00007

    94. [94]

      Joo J, Son J S, Kwon S G, Yu J H, Hyeon T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons[J]. J. Am. Chem. Soc., 2006,128(17):5632-5633. doi: 10.1021/ja0601686

    95. [95]

      Zhou Y, Wang F D, Buhro W E. Reactivity of magic-size nanoclusters (CdSe)13 and (CdTe)13 with acids: Rapid, low-temperature formation of flat colloidal nanocrystals[J]. Chem. Mater., 2020,32:8350-8360. doi: 10.1021/acs.chemmater.0c02205

    96. [96]

      Baek W, Bootharaju M S, Lorenz S, Lee S, Stolte S, Fainblat R, Bacher G, Hyeon T. Nanoconfinement-controlled synthesis of highly active, multinary nanoplatelet catalysts from lamellar magic-sized nanocluster templates[J]. Adv. Funct. Mater., 2021,31(49)2107447. doi: 10.1002/adfm.202107447

    97. [97]

      Ning J J, Liu J, Levi-Kalisman Y, Frenkel A I, Banin U. Controlling anisotropic growth of colloidal ZnSe nanostructures[J]. J. Am. Chem. Soc., 2018,140:14627-14637. doi: 10.1021/jacs.8b05941

    98. [98]

      Han H X, Kallakuri S, Yao Y, Williamson C B, Nevers D R, Savitzky B H, Skye R S, Xu M Y, Voznyy O, Dshemuchadse J. Multiscale hierarchical structures from a nanocluster mesophase[J]. Nat. Mater., 2022,21:518-525. doi: 10.1038/s41563-022-01223-3

    99. [99]

      Yao Y, Ugras T J, Meyer T, Dykes M, Wang D, Arbe A, Bals S, Kahr B, Robinson R D. Extracting pure circular dichroism from hierarchically structured CdS magic cluster films[J]. ACS Nano, 2022,16(12):20457-20469. doi: 10.1021/acsnano.2c06730

    100. [100]

      Han H X, Hirsch K, Hanrath T, Robinson R D, Shepherd L M. The direct electrospinning and manipulation of magic-sized cluster quantum dots[J]. Adv. Eng. Mater., 2021,232100661. doi: 10.1002/adem.202100661

    101. [101]

      Liu Y Y, Rowell N, Willis M, Zhang M, Wang S L, Fan H S, Huang W, Chen X Q, Yu K. Photoluminescent colloidal nanohelices self-assembled from CdSe magic-size clusters via nanoplatelets[J]. J. Phys. Chem. Lett., 2019,10(11):2794-2801. doi: 10.1021/acs.jpclett.9b00838

    102. [102]

      Wang P, Yang Q Q, Xu C, Wang B, Wang H, Zhang J D, Jin Y D. Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution[J]. Nano Res., 2021,15(4):3106-3113.

    103. [103]

      Baek W, Bootharaju M S, Walsh K M, Lee S, Gamelin D R, Hyeon T. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters[J]. Nat. Mater., 2021,20(5):650-657. doi: 10.1038/s41563-020-00880-6

    104. [104]

      Pun A B, Mule A S, Held J T, Norris D J. Core/shell magic-sized CdSe nanocrystals[J]. Nano Lett., 2021,21(18):7651-7658. doi: 10.1021/acs.nanolett.1c02412

    105. [105]

      Schreuder M A, Xiao K, Ivanov I N, Weiss S M, Rosenthal S J. White light-emitting diodes based on ultrasmall CdSe nanocrystal electroluminescence[J]. Nano Lett., 2010,10(2):573-576. doi: 10.1021/nl903515g

    106. [106]

      Bowers M J, Mcbride J R, Rosenthal S J. White-light emission from magic-sized cadmium selenide nanocrystals[J]. J. Am. Chem. Soc., 2005,127(44):15378-15379. doi: 10.1021/ja055470d

    107. [107]

      YANG J, Li Z H, FENG W, LI F Y. Checking of non-radiative energy transfer process in nanocrystal self-assembly structure[J]. Chinese J. Inorg. Chem., 2021,37(12):2158-2166.  

    108. [108]

      YU Y Y, GAO X Q, LIAO C, CUI Y P, ZHANG J Y. Electroluminescent characteristics of Mn-doped CdS/ZnS core/shell nanocrystals[J]. Chinese J. Inorg. Chem., 2015,31(5):895-900.  

    109. [109]

      HU X D, PAN L J, ZHANG H Q. Solvothermal synthesis of CdS nanocrystals with organic sulphur source[J]. Chinese J. Inorg. Chem., 2009,25(6):1011-1017.  

    110. [110]

      Mao L Y, Yang S X, Cheng X Y, Liu S L, Chen D Y, Zhou Z, Li M, Pei C L. One-year observation of the mixing states of oxygenated organics-containing single particles in Guangzhou, China[J]. Front. Environ. Sci. Eng., 2024,18(5)64. doi: 10.1007/s11783-024-1824-3

    111. [111]

      Tutton C G, Young S B, Habib K. Pre-processing of e-waste in Canada: Case of a facility responding to changing material composition[J]. Resources, Environment and Sustainability, 2022,9100069. doi: 10.1016/j.resenv.2022.100069

    112. [112]

      Guo J, Ali S, Xu M. Recycling is not enough to make the world a greener place: Prospects for the circular economy[J]. Green Carbon, 2023,1(2):150-153. doi: 10.1016/j.greenca.2023.10.006

    113. [113]

      Huang H, Ma R, Ren H Q. Scientific and technological innovations of wastewater treatment in China[J]. Front. Environ. Sci. Eng., 2024,18(6)72. doi: 10.1007/s11783-024-1832-3

  • 加载中
    1. [1]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(1)
  • Abstract views(152)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return