Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions
- Corresponding author: Xinyi WANG, wangxy66@nju.edu.cn
Citation: Yinglian LI, Chengcheng ZHANG, Xinyu ZHANG, Xinyi WANG. Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
Bousseksou A, Molnar G, Salmon L, Nicolazzi W. Molecular spin crossover phenomenon: Recent achievements and prospects[J]. Chem. Soc. Rev., 2011,40:3313-3335. doi: 10.1039/c1cs15042a
Meng Y S, Liu T. Manipulating spin transition to achieve switchable multifunctions[J]. Acc. Chem. Res., 2019,52:1369-1379. doi: 10.1021/acs.accounts.9b00049
Kumar K S, Ruben M. Sublimable spin-crossover complexes: from spin-state switching to molecular devices[J]. Angew. Chem. Int. Ed., 2021,60:7502-7521. doi: 10.1002/anie.201911256
Hogue R W, Singh S, Brooker S. Spin crossover in discrete polynuclear iron(Ⅱ) complexes[J]. Chem. Soc. Rev., 2018,47:7303-7338. doi: 10.1039/C7CS00835J
Ni Z P, Liu J L, Hoque M N, Liu W, Li J Y, Chen Y C, Tong M L. Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks[J]. Coord. Chem. Rev., 2017,335:28-43. doi: 10.1016/j.ccr.2016.12.002
Gebretsadik T, Yang Q, Wu J, Tang J. Hydrazone based spin crossover complexes: Behind the extra flexibility of the hydrazone moiety to switch the spin state[J]. Coord. Chem. Rev., 2021,431213666. doi: 10.1016/j.ccr.2020.213666
Shen K Y, Zhang C J, Qu L Y, Jiang S Q, Zhang Y, Tong M L, Bao X. Thermodriven, acidity-driven, and photodriven spin-state switching in pyridylacylhydrazoneiron(Ⅱ) complexes at or above room temperature[J]. Inorg. Chem., 2021,60:18225-18233. doi: 10.1021/acs.inorgchem.1c02866
Ye Y S, Chen X Q, De Cai Y, Fei B, Dechambenoit P, Rouzieres M, Mathoniere C, Clerac R, Bao X. Slow dynamics of the spin-crossover process in an apparent high-spin mononuclear Fe(Ⅱ) complex[J]. Angew. Chem. Int. Ed., 2019,58:18888-18891. doi: 10.1002/anie.201911538
Díaz-Torres R, Boonprab T, Gómez-Coca S, Ruiz E, Chastanet G, Harding P, Harding D J. Structural and theoretical insights into solvent effects in an iron(Ⅲ)SCO complex[J]. Inorg. Chem. Front., 2022,9:5317-5326. doi: 10.1039/D2QI01159J
Díaz-Torres R, Echeverría J, Loveday O, Harding P, Harding D J. Interplay of halogen and hydrogen bonding in a series of heteroleptic iron(Ⅲ) complexes[J]. CrystEngComm, 2021,23:4069-4076. doi: 10.1039/D1CE00480H
Hayami S, Komatsu Y, Shimizu T, Kamihata H, Lee Y H. Spin-crossover in cobalt(Ⅱ) compounds containing terpyridine and its derivatives[J]. Coord. Chem. Rev., 2011,255:1981-1990. doi: 10.1016/j.ccr.2011.05.016
Drath O, Boskovic C. Switchable cobalt coordination polymers: Spin crossover and valence tautomerism[J]. Coord. Chem. Rev., 2018,375:256-266. doi: 10.1016/j.ccr.2017.11.025
Olguín J. Unusual metal centres/coordination spheres in spin crossover compounds[J]. Coord. Chem. Rev., 2020,407213148. doi: 10.1016/j.ccr.2019.213148
Zhang S Y, Sun H Y, Wang R G, Meng Y S, Liu T, Zhu Y Y. Construction of spin-crossover dinuclear cobalt(Ⅱ) compounds based on complementary terpyridine ligand pairing[J]. Dalton Trans., 2022,51:9888-9893. doi: 10.1039/D2DT00436D
Pfrunder M C, Whittaker J J, Parsons S, Moubaraki B, Murray K S, Moggach S A, Sharma N, Micallef A S, Clegg J K, McMurtrie J C. Controlling spin switching with anionic supramolecular frameworks[J]. Chem. Mater., 2020,32:3229-3234. doi: 10.1021/acs.chemmater.0c00375
Ma X, Suturina E A, De S, Negrier P, Rouzieres M, Clerac R, Dechambenoit P. A redox-active bridging ligand to promote spin delocalization, high-spin complexes, and magnetic multi-switchability[J]. Angew. Chem. Int. Ed., 2018,57:7841-7845. doi: 10.1002/anie.201803842
Palion-Gazda J, Machura B, Kruszynski R, Grancha T, Moliner N, Lloret F, Julve M. Spin crossover in double salts containing six- and four-coordinate cobalt(Ⅱ) ions[J]. Inorg. Chem., 2017,56:6281-6296. doi: 10.1021/acs.inorgchem.7b00360
Konarev D V, Khasanov S S, Shestakov A F, Ishikawa M, Otsuka A, Yamochi H, Saito G, Lyubovskaya R N. Spin crossover in anionic cobalt-bridged fullerene (Bu4N+){Co(Ph3P)}2(μ2-Cl-)(μ2-η2, η2-C60)2 dimers[J]. J. Am. Chem. Soc., 2016,138:16592-16595. doi: 10.1021/jacs.6b09890
Halcrow M A. Structure: function relationships in molecular spin-crossover complexes[J]. Chem. Soc. Rev., 2011,40:4119-4142. doi: 10.1039/c1cs15046d
Zhao S Z, Zhou H W, Qin C Y, Zhang H Z, Li Y H, Yamashita M, Wang S. Anion effects on spin crossover systems: From supramolecular chemistry to magnetism[J]. Chem.-Eur. J., 2023,29e202300554. doi: 10.1002/chem.202300554
Ni Z, Shores M P. Supramolecular effects on anion-dependent spin-state switching properties in heteroleptic iron(Ⅱ) complexes[J]. Inorg. Chem., 2010,49:10727-10735. doi: 10.1021/ic102004c
Lochenie C, Bauer W, Railliet A P, Schlamp S, Garcia Y, Weber B. Large thermal hysteresis for iron(Ⅱ) spin crossover complexes with N-(pyrid-4-yl)isonicotinamide[J]. Inorg. Chem., 2014,53:11563-11572. doi: 10.1021/ic501624b
Weber B, Bauer W, Obel J. An iron(Ⅱ) spin-crossover complex with a 70 K wide thermal hysteresis loop[J]. Angew. Chem. Int. Ed., 2008,47:10098-10101. doi: 10.1002/anie.200802806
Krober J, Codjovi E, Kahn O, Grolifcre F, Jay C. A spin transition system with a thermal hysteresis at room temperature[J]. J. Am. Chem. Soc. Rev., 1993,115:9810-9811. doi: 10.1021/ja00074a062
Neville S M, Halder G J, Chapman K W, Duriska M B, Southon P D, Cashion J D, Letard J F, Moubaraki B, Murray K S, Kepert C J. Single-crystal to single-crystal structural transformation and photomagnetic properties of a porous iron(Ⅱ) spin-crossover framework[J]. J. Am. Chem. Soc., 2008,130:2869-2876. doi: 10.1021/ja077958f
Li J Y, Chen Y C, Zhang Z M, Liu W, Ni Z P, Tong M L. Tuning the spin-crossover behaviour of a hydrogen-accepting porous coordination polymer by hydrogen-donating guests[J]. Chem.-Eur. J., 2014,21:1645-1651.
Koningsbruggen P J v, Garcia Y, Codjovi E, Lapouyade R, Kahn O, Fournes L, Rabardel L. Non-classical FeⅡ spin-crossover behaviour in polymeric iron(Ⅱ) compounds of formula[Fe(NH2trz)3]X2·xH2O (NH2trz=4-amino-1, 2, 4-triazole; X=derivatives of naphthalene sulfonate)[J]. J. Am. Chem. Soc., 1997,7:2069-2075.
Garcia Y, Campbell S J, Lord J S, Linares J, D rtu M M, Vendrell Pérez A, Boland Y, Ksenofontov V, Gütlich P. Spin conversion detected by Mössbauer spectroscopy and μSR on a 1D FeⅡ paramagnetic chain[J]. Hyperfine Interact., 2014,226:217-221. doi: 10.1007/s10751-013-0909-3
Hung T Q, Terki F, Kamara S, Dehbaoui M, Charar S, Sinha B, Kim C, Gandit P, Gural'skiy I A, Molnar G, Salmon L, Shepherd H J, Bousseksou A. Room temperature magnetic detection of spin switching in nanosized spin-crossover materials[J]. Angew. Chem. Int. Ed., 2013,125:1223-1226. doi: 10.1002/ange.201205952
Zhao X H, Zhang S L, Shao D, Wang X Y. Spin crossover in[Fe(2-Picolylamine)3]2+ adjusted by organosulfonate anions[J]. Inorg. Chem., 2015,54:7857-7867. doi: 10.1021/acs.inorgchem.5b00870
Shen F X, Pi Q, Shi L, Shao D, Li H Q, Sun Y C, Wang X Y. Spin crossover in hydrogen-bonded frameworks of Fe(Ⅱ) complexes with organodisulfonate anions[J]. Dalton Trans., 2019,48:8815-8825. doi: 10.1039/C9DT01326A
Shao D, Shi L, Yin L, Wang B L, Wang Z X, Zhang Y Q, Wang X Y. Reversible on-off switching of both spin crossover and single-molecule magnet behaviours via a crystal-to-crystal transformation[J]. Chem. Sci., 2018,9:7986-7991. doi: 10.1039/C8SC02774A
Shao D, Yang J, Wei X Q, Shi L, You M, Yang X, Ruan Z, Tian Z. A proton conducting cobalt(Ⅱ) spin crossover complex[J]. Chem.-Asian J., 2022,17e202200949. doi: 10.1002/asia.202200949
Zhou Y, Wei X Q, Gu Y, Zhao Q Q, Shao D. Organosulfonate-modulated spin-crossover behavior in three halogen-functionalized cobalt(Ⅱ) complexes[J]. Eur. J. Inorg. Chem., 2022,26e202200666.
Sun Y C, Chen F L, Wang K J, Zhao Y, Wei H Y, Wang X Y. Hysteretic spin crossover with high transition temperatures in two cobalt(Ⅱ) complexes[J]. Inorg. Chem., 2023,62:14863-14872. doi: 10.1021/acs.inorgchem.3c01188
Kanetomo T, Ni Z, Enomoto M. Hydrogen-bonded cobalt(Ⅱ)-organic framework: Normal and reverse spin-crossover behaviours[J]. Dalton Trans., 2022,51:5034-5040. doi: 10.1039/D2DT00453D
Kobayashi F, Komatsumaru Y, Akiyoshi R, Nakamura M, Zhang Y, Lindoy L F, Hayami S. Water molecule-induced reversible magnetic switching in a bis-terpyridine cobalt(Ⅱ) complex exhibiting coexistence of spin crossover and orbital transition behaviors[J]. Inorg. Chem., 2020,59:16843-16852. doi: 10.1021/acs.inorgchem.0c00818
Kobayashi F, Hiramatsu T, Sueyasu K, Tadokoro M. Proton conductive mononuclear hydrogen-bonded cobalt(Ⅱ) spin crossover complex[J]. Cryst. Growth Des., 2023,23:1633-1640. doi: 10.1021/acs.cgd.2c01243
Nakaya M, Kosaka W, Miyasaka H, Komatsumaru Y, Kawaguchi S, Sugimoto K, Zhang Y, Nakamura M, Lindoy L F, Hayami S. CO2- induced spin-state switching at room temperature in a monomeric cobalt(Ⅱ) complex with the porous nature[J]. Angew. Chem. Int. Ed., 2020,59:10658-10665. doi: 10.1002/anie.202003811
Ghosh S, Kamilya S, Pramanik T, Rouzieres M, Herchel R, Mehta S, Mondal A. ON/OFF photoswitching and thermoinduced spin crossover with cooperative luminescence in a 2D iron(Ⅲ) coordination polymer[J]. Inorg. Chem., 2020,59:13009-13013. doi: 10.1021/acs.inorgchem.0c02136
Hayami S, Shigeyoshi Y, Akita M, Inoue K, Kato K, Osaka K, Takata M, Kawajiri R, Mitani T, Maeda Y. Reverse spin transition triggered by a structural phase transition[J]. Angew. Chem. Int. Ed., 2005,44:4899-4903. doi: 10.1002/anie.200500316
Guo Y, Yang X L, Wei R J, Zheng L S, Tao J. Spin transition and structural transformation in a mononuclear cobalt(Ⅱ) complex[J]. Inorg. Chem., 2015,54:7670-7672. doi: 10.1021/acs.inorgchem.5b01344
Krivokapic I, Zerara M, Daku M L, Vargas A, Enachescu C, Ambrus C, Tregenna Piggott P, Amstutz N, Krausz E, Hauser A. Spin-crossover in cobalt(Ⅱ) imine complexes[J]. Coord. Chem. Rev., 2007,251:364-378. doi: 10.1016/j.ccr.2006.05.006
Khakhlary P, Anson C E, Mondal A, Powell A K, Baruah J B. Structural and magnetic properties of oxyquinolinate clusters of cobalt(Ⅱ) and manganese(Ⅱ) and serendipitous intake of carbonate during synthesis[J]. Dalton Trans., 2015,44:2964-2969. doi: 10.1039/C4DT02999B
Akiyoshi R, Komatsumaru Y, Donoshita M, Dekura S, Yoshida Y, Kitagawa H, Kitagawa Y, Lindoy L F, Hayami S. Ferroelectric and spin crossover behavior in a cobalt(Ⅱ) compound induced by polar-ligand-substituent motion[J]. Angew. Chem. Int. Ed., 2021,60:12717-12722. doi: 10.1002/anie.202015322
Phonsri W, Harding P, Liu L, Telfer S G, Murray K S, Moubaraki B, Ross T M, Jameson G N L, Harding D J. Solvent modified spin crossover in an iron(Ⅲ) complex: Phase changes and an exceptionally wide hysteresis[J]. Chem. Sci., 2017,8:3949-3959. doi: 10.1039/C6SC05317C
Galet A, Gaspar A B, Munoz M C, Real J A. Influence of the counterion and the solvent molecules in the spin crossover system Co(4-terpyridone)2Xp·nH2O[J]. Inorg. Chem., 2006,45:4413-4422. doi: 10.1021/ic060090u
Zenno H, Kobayashi F, Nakamura M, Sekine Y, Lindoy L F, Hayami S. Hydrogen bond-induced abrupt spin crossover behaviour in 1-D cobalt(Ⅱ) complexes—The key role of solvate water molecules[J]. Dalton Trans., 2021,50:7843-7853. doi: 10.1039/D1DT01069G
Ghosh S, Ghosh S, Kamilya S, Mandal S, Mehta S, Mondal A. Impact of counteranion on reversible spin-state switching in a series of cobalt(Ⅱ) complexes containing a redox-active ethylenedioxythiophene-based terpyridine ligand[J]. Inorg. Chem., 2022,61:17080-17088. doi: 10.1021/acs.inorgchem.2c02313
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Luyan Shi , Ke Zhu , Yuting Yang , Qinrui Liang , Qimin Peng , Shuqing Zhou , Tayirjan Taylor Isimjan , Xiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222
Yunjia Jiang , Lingyao Wang , Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Mengjuan Sun , Muye Zhou , Yifang Xiao , Hailei Tang , Jinhua Chen , Ruitao Zhang , Chunjiayu Li , Qi Ya , Qian Chen , Jiasheng Tu , Qiyue Wang , Chunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
Yingying Yan , Wanhe Jia , Rui Cai , Chun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
Wenjuan Jin , Zelong Chen , Yi Wang , Jiaxuan Li , Jiahui Li , Yuxin Pei , Zhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328
Hydrogen atoms and solvent molecules are omitted for clarity.
Symmetry code: A: 2-x, 0.5+y, 1.5-z; Red dashed lines represent hydrogen bonds, and blue dashed lines represent π-π interactions between the pyridyl groups and the naphthalene ring.
Red dashed lines represent hydrogen bonds.