Citation: Yinglian LI, Chengcheng ZHANG, Xinyu ZHANG, Xinyi WANG. Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087 shu

Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions

  • Corresponding author: Xinyi WANG, wangxy66@nju.edu.cn
  • Received Date: 20 March 2024
    Revised Date: 20 April 2024

Figures(7)

  • Two mononuclear cobalt(Ⅱ) complexes, [Co(pytpy)2](2-NH2-1-NS)2·MeOH·H2O (1) and [Co(pytpy)2](4-NH2-1-NS)2·H2O (2), where pytpy=4'-(4-pyridyl)-2, 2'∶6', 2″-terpyridine, 2-NH2-1-NS-=2-amino-1-naphthalenesulfonate, and 4-NH2-1-NS-=4-amino-1-naphthalenesulfonate, were synthesized and characterized structurally and magnetically. Single-crystal X-ray analysis reveals that both complexes consist of the [Co(pytpy)2]2+ cations, organosulfonate anions, and crystallized solvent molecules. The difference between the two anions is the relative position of the sulfonate and amino groups. Interestingly, the 2-NH2-1-NS- anion with the sulfonate and amino group in adjacent positions, forms hydrogen bonds with the [Co(pytpy)2]2+ cation and solvent molecules, while the 4-NH2-1-NS- anion, with the sulfonate and amino groups in para positions, forms a 2D layer structure through hydrogen bonding. Magnetic measurements revealed significant differences in their magnetic properties: while complex 1 exhibits a reversible and gradual spin crossover behavior, complex 2 remains in the high-spin state.
  • 加载中
    1. [1]

      Bousseksou A, Molnar G, Salmon L, Nicolazzi W. Molecular spin crossover phenomenon: Recent achievements and prospects[J]. Chem. Soc. Rev., 2011,40:3313-3335. doi: 10.1039/c1cs15042a

    2. [2]

      Meng Y S, Liu T. Manipulating spin transition to achieve switchable multifunctions[J]. Acc. Chem. Res., 2019,52:1369-1379. doi: 10.1021/acs.accounts.9b00049

    3. [3]

      Kumar K S, Ruben M. Sublimable spin-crossover complexes: from spin-state switching to molecular devices[J]. Angew. Chem. Int. Ed., 2021,60:7502-7521. doi: 10.1002/anie.201911256

    4. [4]

      Hogue R W, Singh S, Brooker S. Spin crossover in discrete polynuclear iron(Ⅱ) complexes[J]. Chem. Soc. Rev., 2018,47:7303-7338. doi: 10.1039/C7CS00835J

    5. [5]

      Ni Z P, Liu J L, Hoque M N, Liu W, Li J Y, Chen Y C, Tong M L. Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks[J]. Coord. Chem. Rev., 2017,335:28-43. doi: 10.1016/j.ccr.2016.12.002

    6. [6]

      Gebretsadik T, Yang Q, Wu J, Tang J. Hydrazone based spin crossover complexes: Behind the extra flexibility of the hydrazone moiety to switch the spin state[J]. Coord. Chem. Rev., 2021,431213666. doi: 10.1016/j.ccr.2020.213666

    7. [7]

      Shen K Y, Zhang C J, Qu L Y, Jiang S Q, Zhang Y, Tong M L, Bao X. Thermodriven, acidity-driven, and photodriven spin-state switching in pyridylacylhydrazoneiron(Ⅱ) complexes at or above room temperature[J]. Inorg. Chem., 2021,60:18225-18233. doi: 10.1021/acs.inorgchem.1c02866

    8. [8]

      Ye Y S, Chen X Q, De Cai Y, Fei B, Dechambenoit P, Rouzieres M, Mathoniere C, Clerac R, Bao X. Slow dynamics of the spin-crossover process in an apparent high-spin mononuclear Fe(Ⅱ) complex[J]. Angew. Chem. Int. Ed., 2019,58:18888-18891. doi: 10.1002/anie.201911538

    9. [9]

      Díaz-Torres R, Boonprab T, Gómez-Coca S, Ruiz E, Chastanet G, Harding P, Harding D J. Structural and theoretical insights into solvent effects in an iron(Ⅲ)SCO complex[J]. Inorg. Chem. Front., 2022,9:5317-5326. doi: 10.1039/D2QI01159J

    10. [10]

      Díaz-Torres R, Echeverría J, Loveday O, Harding P, Harding D J. Interplay of halogen and hydrogen bonding in a series of heteroleptic iron(Ⅲ) complexes[J]. CrystEngComm, 2021,23:4069-4076. doi: 10.1039/D1CE00480H

    11. [11]

      Hayami S, Komatsu Y, Shimizu T, Kamihata H, Lee Y H. Spin-crossover in cobalt(Ⅱ) compounds containing terpyridine and its derivatives[J]. Coord. Chem. Rev., 2011,255:1981-1990. doi: 10.1016/j.ccr.2011.05.016

    12. [12]

      Drath O, Boskovic C. Switchable cobalt coordination polymers: Spin crossover and valence tautomerism[J]. Coord. Chem. Rev., 2018,375:256-266. doi: 10.1016/j.ccr.2017.11.025

    13. [13]

      Olguín J. Unusual metal centres/coordination spheres in spin crossover compounds[J]. Coord. Chem. Rev., 2020,407213148. doi: 10.1016/j.ccr.2019.213148

    14. [14]

      Zhang S Y, Sun H Y, Wang R G, Meng Y S, Liu T, Zhu Y Y. Construction of spin-crossover dinuclear cobalt(Ⅱ) compounds based on complementary terpyridine ligand pairing[J]. Dalton Trans., 2022,51:9888-9893. doi: 10.1039/D2DT00436D

    15. [15]

      Pfrunder M C, Whittaker J J, Parsons S, Moubaraki B, Murray K S, Moggach S A, Sharma N, Micallef A S, Clegg J K, McMurtrie J C. Controlling spin switching with anionic supramolecular frameworks[J]. Chem. Mater., 2020,32:3229-3234. doi: 10.1021/acs.chemmater.0c00375

    16. [16]

      Ma X, Suturina E A, De S, Negrier P, Rouzieres M, Clerac R, Dechambenoit P. A redox-active bridging ligand to promote spin delocalization, high-spin complexes, and magnetic multi-switchability[J]. Angew. Chem. Int. Ed., 2018,57:7841-7845. doi: 10.1002/anie.201803842

    17. [17]

      Palion-Gazda J, Machura B, Kruszynski R, Grancha T, Moliner N, Lloret F, Julve M. Spin crossover in double salts containing six- and four-coordinate cobalt(Ⅱ) ions[J]. Inorg. Chem., 2017,56:6281-6296. doi: 10.1021/acs.inorgchem.7b00360

    18. [18]

      Konarev D V, Khasanov S S, Shestakov A F, Ishikawa M, Otsuka A, Yamochi H, Saito G, Lyubovskaya R N. Spin crossover in anionic cobalt-bridged fullerene (Bu4N+){Co(Ph3P)}2(μ2-Cl-)(μ2-η2, η2-C60)2 dimers[J]. J. Am. Chem. Soc., 2016,138:16592-16595. doi: 10.1021/jacs.6b09890

    19. [19]

      Halcrow M A. Structure: function relationships in molecular spin-crossover complexes[J]. Chem. Soc. Rev., 2011,40:4119-4142. doi: 10.1039/c1cs15046d

    20. [20]

      Zhao S Z, Zhou H W, Qin C Y, Zhang H Z, Li Y H, Yamashita M, Wang S. Anion effects on spin crossover systems: From supramolecular chemistry to magnetism[J]. Chem.-Eur. J., 2023,29e202300554. doi: 10.1002/chem.202300554

    21. [21]

      Ni Z, Shores M P. Supramolecular effects on anion-dependent spin-state switching properties in heteroleptic iron(Ⅱ) complexes[J]. Inorg. Chem., 2010,49:10727-10735. doi: 10.1021/ic102004c

    22. [22]

      Lochenie C, Bauer W, Railliet A P, Schlamp S, Garcia Y, Weber B. Large thermal hysteresis for iron(Ⅱ) spin crossover complexes with N-(pyrid-4-yl)isonicotinamide[J]. Inorg. Chem., 2014,53:11563-11572. doi: 10.1021/ic501624b

    23. [23]

      Weber B, Bauer W, Obel J. An iron(Ⅱ) spin-crossover complex with a 70 K wide thermal hysteresis loop[J]. Angew. Chem. Int. Ed., 2008,47:10098-10101. doi: 10.1002/anie.200802806

    24. [24]

      Krober J, Codjovi E, Kahn O, Grolifcre F, Jay C. A spin transition system with a thermal hysteresis at room temperature[J]. J. Am. Chem. Soc. Rev., 1993,115:9810-9811. doi: 10.1021/ja00074a062

    25. [25]

      Neville S M, Halder G J, Chapman K W, Duriska M B, Southon P D, Cashion J D, Letard J F, Moubaraki B, Murray K S, Kepert C J. Single-crystal to single-crystal structural transformation and photomagnetic properties of a porous iron(Ⅱ) spin-crossover framework[J]. J. Am. Chem. Soc., 2008,130:2869-2876. doi: 10.1021/ja077958f

    26. [26]

      Li J Y, Chen Y C, Zhang Z M, Liu W, Ni Z P, Tong M L. Tuning the spin-crossover behaviour of a hydrogen-accepting porous coordination polymer by hydrogen-donating guests[J]. Chem.-Eur. J., 2014,21:1645-1651.

    27. [27]

      Koningsbruggen P J v, Garcia Y, Codjovi E, Lapouyade R, Kahn O, Fournes L, Rabardel L. Non-classical Fe spin-crossover behaviour in polymeric iron(Ⅱ) compounds of formula[Fe(NH2trz)3]X2·xH2O (NH2trz=4-amino-1, 2, 4-triazole; X=derivatives of naphthalene sulfonate)[J]. J. Am. Chem. Soc., 1997,7:2069-2075.

    28. [28]

      Garcia Y, Campbell S J, Lord J S, Linares J, D rtu M M, Vendrell Pérez A, Boland Y, Ksenofontov V, Gütlich P. Spin conversion detected by Mössbauer spectroscopy and μSR on a 1D Fe paramagnetic chain[J]. Hyperfine Interact., 2014,226:217-221. doi: 10.1007/s10751-013-0909-3

    29. [29]

      Hung T Q, Terki F, Kamara S, Dehbaoui M, Charar S, Sinha B, Kim C, Gandit P, Gural'skiy I A, Molnar G, Salmon L, Shepherd H J, Bousseksou A. Room temperature magnetic detection of spin switching in nanosized spin-crossover materials[J]. Angew. Chem. Int. Ed., 2013,125:1223-1226. doi: 10.1002/ange.201205952

    30. [30]

      Zhao X H, Zhang S L, Shao D, Wang X Y. Spin crossover in[Fe(2-Picolylamine)3]2+ adjusted by organosulfonate anions[J]. Inorg. Chem., 2015,54:7857-7867. doi: 10.1021/acs.inorgchem.5b00870

    31. [31]

      Shen F X, Pi Q, Shi L, Shao D, Li H Q, Sun Y C, Wang X Y. Spin crossover in hydrogen-bonded frameworks of Fe(Ⅱ) complexes with organodisulfonate anions[J]. Dalton Trans., 2019,48:8815-8825. doi: 10.1039/C9DT01326A

    32. [32]

      Shao D, Shi L, Yin L, Wang B L, Wang Z X, Zhang Y Q, Wang X Y. Reversible on-off switching of both spin crossover and single-molecule magnet behaviours via a crystal-to-crystal transformation[J]. Chem. Sci., 2018,9:7986-7991. doi: 10.1039/C8SC02774A

    33. [33]

      Shao D, Yang J, Wei X Q, Shi L, You M, Yang X, Ruan Z, Tian Z. A proton conducting cobalt(Ⅱ) spin crossover complex[J]. Chem.-Asian J., 2022,17e202200949. doi: 10.1002/asia.202200949

    34. [34]

      Zhou Y, Wei X Q, Gu Y, Zhao Q Q, Shao D. Organosulfonate-modulated spin-crossover behavior in three halogen-functionalized cobalt(Ⅱ) complexes[J]. Eur. J. Inorg. Chem., 2022,26e202200666.

    35. [35]

      Sun Y C, Chen F L, Wang K J, Zhao Y, Wei H Y, Wang X Y. Hysteretic spin crossover with high transition temperatures in two cobalt(Ⅱ) complexes[J]. Inorg. Chem., 2023,62:14863-14872. doi: 10.1021/acs.inorgchem.3c01188

    36. [36]

      Kanetomo T, Ni Z, Enomoto M. Hydrogen-bonded cobalt(Ⅱ)-organic framework: Normal and reverse spin-crossover behaviours[J]. Dalton Trans., 2022,51:5034-5040. doi: 10.1039/D2DT00453D

    37. [37]

      Kobayashi F, Komatsumaru Y, Akiyoshi R, Nakamura M, Zhang Y, Lindoy L F, Hayami S. Water molecule-induced reversible magnetic switching in a bis-terpyridine cobalt(Ⅱ) complex exhibiting coexistence of spin crossover and orbital transition behaviors[J]. Inorg. Chem., 2020,59:16843-16852. doi: 10.1021/acs.inorgchem.0c00818

    38. [38]

      Kobayashi F, Hiramatsu T, Sueyasu K, Tadokoro M. Proton conductive mononuclear hydrogen-bonded cobalt(Ⅱ) spin crossover complex[J]. Cryst. Growth Des., 2023,23:1633-1640. doi: 10.1021/acs.cgd.2c01243

    39. [39]

      Nakaya M, Kosaka W, Miyasaka H, Komatsumaru Y, Kawaguchi S, Sugimoto K, Zhang Y, Nakamura M, Lindoy L F, Hayami S. CO2- induced spin-state switching at room temperature in a monomeric cobalt(Ⅱ) complex with the porous nature[J]. Angew. Chem. Int. Ed., 2020,59:10658-10665. doi: 10.1002/anie.202003811

    40. [40]

      Ghosh S, Kamilya S, Pramanik T, Rouzieres M, Herchel R, Mehta S, Mondal A. ON/OFF photoswitching and thermoinduced spin crossover with cooperative luminescence in a 2D iron(Ⅲ) coordination polymer[J]. Inorg. Chem., 2020,59:13009-13013. doi: 10.1021/acs.inorgchem.0c02136

    41. [41]

      Hayami S, Shigeyoshi Y, Akita M, Inoue K, Kato K, Osaka K, Takata M, Kawajiri R, Mitani T, Maeda Y. Reverse spin transition triggered by a structural phase transition[J]. Angew. Chem. Int. Ed., 2005,44:4899-4903. doi: 10.1002/anie.200500316

    42. [42]

      Guo Y, Yang X L, Wei R J, Zheng L S, Tao J. Spin transition and structural transformation in a mononuclear cobalt(Ⅱ) complex[J]. Inorg. Chem., 2015,54:7670-7672. doi: 10.1021/acs.inorgchem.5b01344

    43. [43]

      Krivokapic I, Zerara M, Daku M L, Vargas A, Enachescu C, Ambrus C, Tregenna Piggott P, Amstutz N, Krausz E, Hauser A. Spin-crossover in cobalt(Ⅱ) imine complexes[J]. Coord. Chem. Rev., 2007,251:364-378. doi: 10.1016/j.ccr.2006.05.006

    44. [44]

      Khakhlary P, Anson C E, Mondal A, Powell A K, Baruah J B. Structural and magnetic properties of oxyquinolinate clusters of cobalt(Ⅱ) and manganese(Ⅱ) and serendipitous intake of carbonate during synthesis[J]. Dalton Trans., 2015,44:2964-2969. doi: 10.1039/C4DT02999B

    45. [45]

      Akiyoshi R, Komatsumaru Y, Donoshita M, Dekura S, Yoshida Y, Kitagawa H, Kitagawa Y, Lindoy L F, Hayami S. Ferroelectric and spin crossover behavior in a cobalt(Ⅱ) compound induced by polar-ligand-substituent motion[J]. Angew. Chem. Int. Ed., 2021,60:12717-12722. doi: 10.1002/anie.202015322

    46. [46]

      Phonsri W, Harding P, Liu L, Telfer S G, Murray K S, Moubaraki B, Ross T M, Jameson G N L, Harding D J. Solvent modified spin crossover in an iron(Ⅲ) complex: Phase changes and an exceptionally wide hysteresis[J]. Chem. Sci., 2017,8:3949-3959. doi: 10.1039/C6SC05317C

    47. [47]

      Galet A, Gaspar A B, Munoz M C, Real J A. Influence of the counterion and the solvent molecules in the spin crossover system Co(4-terpyridone)2Xp·nH2O[J]. Inorg. Chem., 2006,45:4413-4422. doi: 10.1021/ic060090u

    48. [48]

      Zenno H, Kobayashi F, Nakamura M, Sekine Y, Lindoy L F, Hayami S. Hydrogen bond-induced abrupt spin crossover behaviour in 1-D cobalt(Ⅱ) complexes—The key role of solvate water molecules[J]. Dalton Trans., 2021,50:7843-7853. doi: 10.1039/D1DT01069G

    49. [49]

      Ghosh S, Ghosh S, Kamilya S, Mandal S, Mehta S, Mondal A. Impact of counteranion on reversible spin-state switching in a series of cobalt(Ⅱ) complexes containing a redox-active ethylenedioxythiophene-based terpyridine ligand[J]. Inorg. Chem., 2022,61:17080-17088. doi: 10.1021/acs.inorgchem.2c02313

  • 加载中
    1. [1]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    2. [2]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    3. [3]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    4. [4]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    5. [5]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    6. [6]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    7. [7]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    8. [8]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    9. [9]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    10. [10]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    11. [11]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    12. [12]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    13. [13]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    14. [14]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    15. [15]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    16. [16]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    17. [17]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    18. [18]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    19. [19]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    20. [20]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

Metrics
  • PDF Downloads(1)
  • Abstract views(90)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return