Citation: Guangming YIN, Huaiyao WANG, Jianhua ZHENG, Xinyue DONG, Jian LI, Yi'nan SUN, Yiming GAO, Bingbing WANG. Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086 shu

Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials

  • Corresponding author: Guangming YIN, qdyingm@163.com
  • Received Date: 19 March 2024
    Revised Date: 28 June 2024

Figures(9)

  • Protonated g-C3N4 nanorod loaded with Ag (Ag/pCN) materials were prepared. The photocatalytic degradation of methylene blue (MB) solution was compared between g-C3N4 (CN), CN loaded with Ag (Ag/CN), pCN, and Ag/pCN under visible light. Ag/pCN had the highest photocatalytic efficiency of 92.63% and exhibited good stability. The mechanism of photocatalytic degradation of MB by Ag/pCN was investigated through the photocurrent-time (I-t) curve, Nyquist curve, Mott-Schokkty curve, and capture experiment. Although the π conjugated system of pCN was disrupted, the synergistic effect of forming nanorods, increasing specific surface area, and loading Ag resulted in the excellent photocatalytic performance of Ag/pCN. Hydroxyl radicals (·OH) are the main active substances in the photocatalytic process. The active substance ·OH is produced by the reaction of photo-generated electrons (e-) with O2, as well as photo-generated holes (h+) with H2O or OH-.
  • 加载中
    1. [1]

      Manas R P, Snehashis P, Binita N. A review on CN based photo-catalyst for clean environment[J]. Biointerface Res. Appl. Chem., 2020,10(2):5021-5027. doi: 10.33263/BRIAC101.021027

    2. [2]

      Wen J Q, Xie J, Chen X B, Li X. A review on g-C3N4-based photocatalysts[J]. Appl. Surf. Sci., 2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030

    3. [3]

      Ismael M. A review on graphitic carbon nitride (CN) based nanocomposites: Synthesis, categories, and their application in photocatalysis[J]. J. Alloy. Compd., 2020,846:15446-15476.

    4. [4]

      Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat. Mater., 2011,10(12):911-921. doi: 10.1038/nmat3151

    5. [5]

      Lin Q, Guo X B, Fu H L, Zhao Y, Liang D, Wang Z, Zhang X J. Fabrication and enhanced visible photocatalytic activity of AuPt@CN[J]. Mater. Lett., 2023,341(15)134194.

    6. [6]

      Muthukumar R, Balaji G, Vadivel S. The charge transfer pathway of CN decorated Au/Bi(VO4) composites for highly efficient photocatalytic hydrogen evolution[J]. Int. J. Hydrog. Energy, 2023,48(62):23856-23865. doi: 10.1016/j.ijhydene.2023.03.152

    7. [7]

      Munoz-Batista M J, Fontelles-Carceller O, Ferrer M, Marcos F G, Anna K. Disinfection capability of Ag/CN composite photocatalysts under UV and visible light illumination[J]. Appl. Catal. B-Environ., 2016,183:86-95. doi: 10.1016/j.apcatb.2015.10.024

    8. [8]

      Lu S, Zhang Y, Mady M F. Efficient electrochemical reduction of CO2 to CO by Ag-decorated B-doped CN: A combined theoretical and experimental study[J]. Ind. Eng. Chem. Res., 2022,61(29):10400-10408. doi: 10.1021/acs.iecr.2c00152

    9. [9]

      Qi K Z, Li Y, Xie Y B, Liu S Y, Zheng K, Chen Z, Wang R D. Ag loading enhanced photocatalytic activity of CN porous nanosheets for decomposition of organic pollutants[J]. Front. Chem., 2019,791. doi: 10.3389/fchem.2019.00091

    10. [10]

      Wang L L, Yu M, Wu C L, Deng N, Wang C, Yao X Q. Synthesis of Ag/CN composite as highly Efficient visible-light photocatalyst for oxidative amidation of aromatic aldehydes[J]. Adv. Synth. Catal., 2016,358(6):2631-2641.

    11. [11]

      Perumal D, Jo W K. Application of nanoroll-type Ag/CN for selective conversion of toxic nitrobenzene to industrially-valuable aminobenzene[J]. Int. J. Environ. Sci., 2020,29(1):95-108. doi: 10.5322/JESI.2020.29.1.95

    12. [12]

      Li S Y, Zhang M, Qu Z H, Cui X, Liu Z Y, Piao C C, Li S G, Wang J, Song Y T. Fabrication of highly active Z-scheme Ag/CN-Ag-Ag3PO4(110) photocatalyst for visible light photocatalytic degradation of levofloxacin with simultaneous hydrogen production[J]. Chem. Eng. J., 2020,382(1):2-13.

    13. [13]

      Qian L, Hou Y P, Yu Z B, Li M J, Li F Y, Sun L, Luo W, Pan G X. Metal-induced Z-scheme CdS/Ag/CN photocatalyst for enhanced hydrogen evolution under visible light: The synergy of MIP effect and electron mediator of Ag[J]. Mol. Catal., 2018,458:43-51. doi: 10.1016/j.mcat.2018.07.027

    14. [14]

      Ma T, Xia X Q, Liu C B, Tang F, Jin T, Qian J C, Chen Z G. Preparation of MoS2-Ag/CN composite for rhodamine B degradation[J]. Nano, 2021,16(7)2150078. doi: 10.1142/S1793292021500788

    15. [15]

      Lan T H, Nhat L D, Trinh D N. Fabrication of Ternary Ag/CN/BiVO4 composites with enhanced visible-light-driven photocatalytic activity toward rhodamine B elimination[J]. ChemistrySelect, 2023,8(28):1-8.

    16. [16]

      Gong D Z, Li X Q, Zhang X L, Zhang W T, Chen T H, Zhang X H. Green fabrication of citrus pectin-Ag@AgCl/CN nanocomposites with enhanced photocatalytic activity for the degradation of new coccine[J]. Food Chem., 2022,387(9):1-10.

    17. [17]

      Zhu Z, Tang X, Ma C C, Song M S, Gao N L, Wang Y S, Huo P W, Lu Z Y, Yan Y S. Fabrication of conductive and high-dispersed Ppy@Ag/CN composite photocatalysts for removing various pollutants in water[J]. Appl. Surf. Sci., 2016,387:366-374. doi: 10.1016/j.apsusc.2016.06.124

    18. [18]

      Xu J H, Ma S Y. High-efficiency photocatalytic degradation of RhB by protonation of CN with Ag-loaded TiO2 nanofibers[J]. J. Cryst. Growth, 2023,617:17290-17296.

    19. [19]

      Hu C C, Tsai W F, Wei W H, Lin K Y, Liu M T, Nakagawa K. Hydroxylation and sodium intercalation on CN for photocatalytic removal of gaseous formaldehyde[J]. Carbon, 2021,175:467-477. doi: 10.1016/j.carbon.2021.01.112

    20. [20]

      Zhang Y J, Thomas A, Antonietti M, Wang X C. Activation of carbon nitride solids by protonation: Morphology changes, enhanced ionic conductivity, and photoconduction experiments[J]. J. Am. Chem. Soc., 2009,131:50-51. doi: 10.1021/ja808329f

    21. [21]

      Huang Z J, Li F B, Chen B F, Yuan G Q. Porous and low-defected graphitic carbon nitride nanotubes for efficient hydrogen evolution under visible light irradiation[J]. RSC Adv., 2015,5:102700-102706. doi: 10.1039/C5RA23419K

    22. [22]

      Qin J Y, Huo J P, Zhang P Y, Zeng J, Wang T T, Zeng H P. Improving photocatalytic hydrogen production of Ag/CN nanocomposites by dye-sensitization under visible light irradiation[J]. Nanoscale, 2016,8(4):2249-2259. doi: 10.1039/C5NR06346A

    23. [23]

      Chen Y, Wang B, Lin S, Zhang Y F, Wang X C. Activation of nπ* transitions in two-dimensional conjugated polymers for visible light photocatalysis[J]. J. Phys. Chem. C, 2014,118:29981-29989. doi: 10.1021/jp510187c

    24. [24]

      Xu J, Zhang L W, Shi R, Zhu Y F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. J. Mater. Chem. A, 2013,46(1):14766-14772.

    25. [25]

      Xu Y G, Xie M, Huang S Q, Xu H, Ji H Y, Xia J X, Li Y P, Li H M. High yield synthesis of nano-size CN derivatives by a dissolve-regrowth method with enhanced photocatalytic ability[J]. RSC Adv., 2015,5:26281-26290. doi: 10.1039/C5RA01206F

    26. [26]

      Zhou Z X, Wang J H, Yu J C, Shen Y F, Li Y, Liu A R, Liu S Q, Zhang Y J. Dissolution and liquid crystals phase of 2D polymeric carbon nitride[J]. J. Am. Chem. Soc., 2015,137(6):2179-2182.

    27. [27]

      Vaiano V, Jaramillo-Paez C A, Mariantonietta M, José A N, Maríadel C H. UV and visible-light driven photocatalytic removal of caffeine using ZnO modified with different noble metals (Pt, Ag and Au)[J]. Mater. Res. Bull., 2019,112:251-260. doi: 10.1016/j.materresbull.2018.12.034

    28. [28]

      Liu Q, Guo Y R, Chen Z H, Zhang Z G, Fang X M. Constructing a novel ternary Fe(Ⅲ)/graphene/CN composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect[J]. Appl. Catal. B-Environ., 2016,183:231-241. doi: 10.1016/j.apcatb.2015.10.054

    29. [29]

      Du X R, Zou G J, Wang Z H, Wang X L. A scalable chemical route to soluble acidified graphitic carbon nitride: An ideal precursor for isolated ultrathin CN nanosheets[J]. Nanoscale, 2015,7(19):8701-8706. doi: 10.1039/C5NR00665A

    30. [30]

      Martha S, Nashim A, Parida K M. Facile synthesis of highly active CN for efficient hydrogen production under visible light[J]. J. Mater. Chem. A, 2013,1:7816-7824. doi: 10.1039/c3ta10851a

    31. [31]

      Wang X P, Lim T T. Highly stable heterostructured Ag-AgBr/TiO2 composite: A bifunctional visible-light active photocatalyst for destruction of ibuprofen and bacteria[J]. J. Mater. Chem., 2012,22:23149-23158. doi: 10.1039/c2jm35503e

    32. [32]

      Wang K C, Song S W, Zhang Q F, Jin Y H, Zhang Q H. Fabrication of protonated CN nanosheets as promising proton conductive materials[J]. Chem. Commun., 2019,55(51):7414-7417. doi: 10.1039/C9CC02758K

    33. [33]

      Cushing S K, Li J T, Meng F K, Senty T R, Suri S, Zhi M J, Li M, Bristow A D, Wu N Q. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor[J]. J. Am. Chem. Soc., 2012,134(36):15033-15041.

    34. [34]

      Luo Y D, Han Y, Hua Y, Xue M S, Yu S H, Zhang L S, Yin Z Z, Li X B, Ma X W, Wu H Y, Liu T X, Shen Y, Gao B. Step scheme nickel-aluminium layered double hydroxides/biochar heterostructure photocatalyst for synergistic adsorption and photodegradation of tetracycline[J]. Chemosphere, 2022,309136802.

    35. [35]

      Harris C, Kamat P V. Photocatalytic events of CdSe quantum dots in confined media. Electrodic behavior of coupled platinum nanoparticles[J]. ACS Nano, 2012,4(12):7321-7330.

    36. [36]

      Li Z S, Chen Q Y, Lin Q C, Chen Y, Liao X C, Yu H Q, Yu C L. Three-dimensional P-doped porous CN nanosheets as an efficient metal-free photocatalyst for visible-light photocatalytic degradation of rhodamine B model pollutant[J]. J. Taiwan Inst. Chem. Eng., 2020,9:1-14.

    37. [37]

      Liu J L, Zhang C L, Ma B, Yang T, Gu X, Wang X, Zhang J S, Hu C G. Rational design of photoelectrontrapped/accumulated site and transportation path for superior photocatalyst[J]. Nano Energy, 2017,38:271-280.

    38. [38]

      Jigyasa , Singh H, Rajput J K. Graphitic carbon nitride nanosheets (CNNS) as dual responsive template for fluorescent sensing as well as degradation of food colorants[J]. Food Chem., 2021,343(1)128451.

  • 加载中
    1. [1]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    2. [2]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    3. [3]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    4. [4]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    8. [8]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    13. [13]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(1)
  • Abstract views(162)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return