Citation: Yuanpei ZHANG, Jiahong WANG, Jinming HUANG, Zhi HU. Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077 shu

Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater

  • Corresponding author: Jiahong WANG, wangjiahong@sust.edu.cn
  • Received Date: 11 March 2024
    Revised Date: 29 June 2024

Figures(11)

  • Magnetically mesoporous carbon (Fe3O4@C)/nano-zerovalent iron (nZVI) composites (Fe3O4@C-nZVI) were successfully prepared by a liquid-phase reduction for the effective removal of Cr(Ⅲ)-EDTA (EDTA: ethylenediaminetetra-acetic acid) in high-salinity wastewater. By characterization and analysis by scanning electron microscope (SEM) and electron microscope (TEM), the nZVI has been successfully loaded into the carbon layer without significant agglomeration and can be magnetically separated and nZVI was stable under the protection of a carbon layer which is favorable for the reuse of materials. The presence of nZVI on the adsorbents greatly improved the adsorption of Cr(Ⅲ)-EDTA and the maximum adsorption capacity of Fe3O4@C-nZVI was 10.24 mg·g-1 at pH=4.0, 25 ℃, which was remarkably higher than that of Fe3O4@C (4.31 mg·g-1). The results showed that the Langmuir model and the pseudo-second-order kinetic model can better describe the adsorption of Cr(Ⅲ)-EDTA by Fe3O4@C-nZVI. The adsorption capacity of Fe3O4@C-nZVI on Cr(Ⅲ)-EDTA increased and then decreased with the increase of solution pH value; low concentrations of complexing agents (EDTA, citric acid) would promote the adsorption of Cr(Ⅲ)-EDTA, whereas an increase in the concentration of the complexing agents showed inhibition; due to the charge shielding effect, high concentrations of cations (Na+, K+, Ca2+) in the solution will promote the adsorption of Cr(Ⅲ)-EDTA. Fe3O4@C-nZVI still showed significant adsorption of Cr(Ⅲ)-EDTA in a salt and complexant environment. The adsorption saturated Fe3O4@C-nZVI was regenerated by 0.1 mol·L-1 HCl solution, the adsorption of Cr(Ⅲ)-EDTA by Fe3O4@CnZVI reached 6.90 mg·g-1 after three regeneration cycles. X -ray photoelectron spectrum analysis of Fe3O4@C-nZVI before and after reaction showed that the adsorption mechanism was mainly through complexation between surface FeⅢ and Cr(Ⅲ)-EDTA to form FeⅢ-EDTA-Cr(Ⅲ) complexation products, and subsequently displaces Cr(Ⅲ) due to ionic displacement, and the displaced Cr(Ⅲ) will be removed by co-precipitation with FeⅢ as CrxFe1-x(OH)3 deposited on the nZVI surface.
  • 加载中
    1. [1]

      Wu Z Y, Zhang H, Ali E, Shahab A, Huang H Y, Ullah H, Zeng H H. Synthesis of novel magnetic activated carbon for effective Cr(Ⅵ) removal via synergistic adsorption and chemical reduction[J]. Environ. Technol. Innov., 2023,30103092. doi: 10.1016/j.eti.2023.103092

    2. [2]

      Murthy M K, Khandayataray P, Padhiary S, Samal D. A review on chromium health hazards and molecular mechanism of chromium bioremediation[J]. Rev. Environ. Health, 2023,38:461-478. doi: 10.1515/reveh-2021-0139

    3. [3]

      YANG S L, CHEN Y H, YAN M L, WEI C T, LI S X, JIA B J. Effect of free water molecule in copper complexes on the performance of light absorption and adsorption of Cr(Ⅵ)[J]. Chinese J. Inorg. Chem., 2023,39(11):2160-2168.

    4. [4]

      Mpofu A B, Oyekola O O, Welz P J. Anaerobic treatment of tannery wastewater in the context of a circular bioeconomy for developing countries[J]. J. Clean. Prod., 2021,29626490.

    5. [5]

      Ma R G, Wang T, Huang T B, Sun W L, Qiao S, Liu W. Insights into interactions of Cr(Ⅲ) and organic matters during adsorption onto titanate nanotubes: Differential absorbance and DFT study[J]. J. Mol. Liq., 2020,312113432. doi: 10.1016/j.molliq.2020.113432

    6. [6]

      HU K, WANG J S, MAO R, LIU Y, WANG K F, ZHANG R S, LIU X B, SHI D Z, ZHAO X. Enhanced decomplexation of Cu-EDTA and cathode recovery of Cu by the Fenton-like oxidation using pulsed[J]. Acta Scientiae Circumstantiae, 2023,43(12):354-364.

    7. [7]

      Lu K Q, Gao M M, Sun B, Wang M, Wang S G, Wang X H. Simultaneous removal of Cr and organic matters via coupling Cr-Fenton-like reaction with Cr flocculation: The key role of Cr flocs on coupling effect[J]. Chemosphere, 2022,287131991. doi: 10.1016/j.chemosphere.2021.131991

    8. [8]

      Anfar Z, Ahsaine H A, Zbair M, Amedlous A, El Fakir A A, Jada A, El Alem N. Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: A review[J]. Crit. Rev. Environ. Sci. Technol., 2019,50:1043-1084.

    9. [9]

      LUO Z Y, LIU C, HUANG L, SHEN J Y, WANG Z X. The research and application progress of heavy metal capturing agents in water treatment a review[J]. Environmental Pollution & Control, 2022,44(11):1519-1525.

    10. [10]

      Xia X, Yang J J, Yan Y B, Wang J, Hu Y F, Zeng X B. Molecular sorption mechanisms of Cr(Ⅲ) to organo-ferrihydrite coprecipitates using synchrotron-based EXAFS and STXM techniques[J]. Environ. Sci. Technol., 2020,54:12989-12997. doi: 10.1021/acs.est.0c02872

    11. [11]

      Benzigar M R, Talapaneni S N, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications[J]. Chem. Soc. Rev., 2018,47:2680-2721. doi: 10.1039/C7CS00787F

    12. [12]

      Wang B L, Fu Y G, Li J, Liu T. Yolk-shelled Co@SiO2@mesoporous carbon microspheres: Construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption[J]. J. Colloid Interface Sci., 2022,607:540-1550.

    13. [13]

      WANG F, TAN X P, LIAO B, LIU Z, PENG Q A, ZHU C N. Review on remediation of soil heavy metal pollution by nanoscale zero-valent iron[J]. Applied Chemical Industry, 2023,52(4):1257-1263.

    14. [14]

      LIU Z X, KE Y, HUANG L, JI L L, ZHANG W C, WANG T Y. Advances in the modification and application of nanoscale zero-valent iron[J]. New Chemical Materials, 2023,51(12):253-259.

    15. [15]

      ZHU J L, GUO S C, XU W J, FENG Y C, CAI Q, NI Y C, SUN R. Preparation of nano iron-modified biochar and its adsorption performance on chromium-containing wastewater[J]. Chinese Journal of Environmental Engineering, 2023,17(9):2891-2898.

    16. [16]

      Dong Z C, Xu Y Y, Wu C, Chao J, Chen T. Efficient removal of natural organo-chromium(Ⅲ) through self-circulating decomplex and immobilization with nanoscale zero-valent iron[J]. Nano Res., 2024,17:364-371. doi: 10.1007/s12274-023-6028-9

    17. [17]

      Liang L Q, Wang J H, Zhang Y X. Magnetic mesoporous carbon hollow microspheres adsorbents for the efficient removal of Cr(Ⅲ) and Cr(Ⅲ)-EDTA in high salinity water[J]. Microporous Mesoporous Mat., 2023,347112344. doi: 10.1016/j.micromeso.2022.112344

    18. [18]

      Cheng Y, Zhou W J, Zhu L Z. Enhanced reactivity and mechanisms of mesoporous carbon supported zero-valent iron composite for trichloroethylene removal in batch studies[J]. Sci. Total Environ., 2020,718137256. doi: 10.1016/j.scitotenv.2020.137256

    19. [19]

      Zhang S, Lyu H H, Tang J C, Song B R, Zhen M H, Liu X M. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water[J]. Chemosphere, 2019,217:686-694. doi: 10.1016/j.chemosphere.2018.11.040

    20. [20]

      LIU S P, XIA X K, XIN B W, ZHANG Y R, BAI Y, JIN H, LI C W. Study on mechanism of adsorption of Cr(Ⅵ) by modified activated carbon loaded with nano-zero-valent iron[J]. Journal of University of Science and Technology, 2023,46(4):287-295.

    21. [21]

      Wu Y W, Chen X T, Han Y, Yue D T, Cao X D, Zhao Y X, Qian X F. Highly efficient utilization of nano-Fe(0) Embedded in mesoporous carbon for activation of peroxydisulfate[J]. Environ. Sci. Technol., 2019,53:9081-9090. doi: 10.1021/acs.est.9b02170

    22. [22]

      Ren Y, Abbood H A, He F B, Peng H, Huang K X. Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption[J]. Chem. Eng. J., 2013,226:300-311. doi: 10.1016/j.cej.2013.04.059

    23. [23]

      Cao X H, Guo J, Mao J D, Lan Y Q. Adsorption and mobility of Cr(Ⅲ)-organic acid complexes in soils[J]. J. Hazard. Mater., 2011,192:1533-1538. doi: 10.1016/j.jhazmat.2011.06.076

    24. [24]

      Grzetic D J, Delaney K T, Fredrickson G H. Field-theoretic study of salt-induced order and disorder in a polarizable diblock copolymer[J]. ACS Macro. Lett., 2019,8:962-967. doi: 10.1021/acsmacrolett.9b00316

    25. [25]

      Zhang Y, Yang M, Dou X M, He H, Wang D S. Arsenate Adsorption on an Fe-Ce bimetal oxide adsorbent:  Role of surface properties[J]. Environ. Sci. Technol., 2005,39:7246-7253. doi: 10.1021/es050775d

    26. [26]

      Song L, Jing S C, Qiu Y X, Liu F Q, Li A M. Efficient removal of Cr(Ⅲ)-carboxyl complex from neutral and high-salinity wastewater by nitrogen doped biomass-based composites[J]. Chin. Chem. Lett., 2023,34107180. doi: 10.1016/j.cclet.2022.01.073

    27. [27]

      Bae S, Hanna K. Reactivity of nanoscale zero-valent iron in unbuffered systems: Effect of pH and Fe(Ⅱ) dissolution[J]. Environ. Sci. Technol., 2015,49(17):10536-10543. doi: 10.1021/acs.est.5b01298

    28. [28]

      Liao M Z, Zhao S X, Wei K, Sun H W, Zhang L Z. Precise decomplexation of Cr(Ⅲ)-EDTA and in-situ Cr(Ⅲ) removal with oxalated zero-valent iron[J]. Appl. Catal. B-Environ., 2023,330122619. doi: 10.1016/j.apcatb.2023.122619

    29. [29]

      Ikemoto I, Ishii K, Kinoshita S, Kuroda H, Alario Franco M A, Thomas J M. X-ray photoelectron spectroscopic studies of CrO2 and some related chromium compounds[J]. J. Solid State Chem., 1976,17:425-430. doi: 10.1016/S0022-4596(76)80012-6

    30. [30]

      Esfandiari N, Kashefi M, Mirjalili M, Afsharnezhad S. Role of silica mid-layer in thermal and chemical stability of hierarchical Fe3O4-SiO2-TiO2 nanoparticles for improvement of lead adsorption: Kinetics, thermodynamic and deep XPS investigation[J]. Mater. Sci. Eng. B, 2020,262114690. doi: 10.1016/j.mseb.2020.114690

    31. [31]

      Niu Q J, Liu M L, Fang L Y, Yu Y Y, Cheng L, You T L. Highly dispersed and stable nano zero-valent iron doped electrospun carbon nanofiber composite for aqueous hexavalent chromium removal[J]. RSC Adv., 2022,12:8178-8187. doi: 10.1039/D2RA00193D

    32. [32]

      HUA Y L, LI D H, GU T H, WANG W, LI R F, YANG J P, ZHANG W X. Enrichment of uranium from aqueous solutions with nanoscale zero-valent iron: Surface chemistry and application prospect[J]. Acta Chim. Sin., 2021,79(8):1008-1022.

    33. [33]

      ZHANG C A, JIN L, HUANG Y P, TIAN H L, CAO X Q, FANG Y F. Anti-oxidation ability of nanoscale zero valent iron viaacetone flushing method[J]. Environmental Chemistry, 2021,40(3):790-798.

    34. [34]

      Wang S, Gao B, Li Y, Creamer A E, He F. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests[J]. J. Hazard. Mater., 2022,322:172-181.

    35. [35]

      Zhang S J, Li X Y, Chen J P. An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber[J]. J. Colloid Interface Sci., 2010,343:232-238. doi: 10.1016/j.jcis.2009.11.001

    36. [36]

      Roverso M, Di Marco V, Favaro G, Di Gangi I M, Badocco D, Zerlottin M, Refosco D, Tapparo A, Bogialli S, Pastore P. New insights in the slow ligand exchange reaction between Cr(Ⅲ)-EDTA and Fe(Ⅲ), and direct analysis of free and complexed EDTA in tannery wastewaters by liquid chromatography-Tandem mass spectrometry[J]. Chemosphere, 2021,264128487. doi: 10.1016/j.chemosphere.2020.128487

    37. [37]

      LI R. Study on the performance and mechanism of heavy metal complexes removal based on iron ions replacement strategy. Nanjing: Nanjing University of Science and Technology, 2022: 44-67

    38. [38]

      LONG Y, QIAN L B, LI Y G, ZAHNG W Y, WEI Z F, DONG X Z, YANG L, WU W P, YAN J C, CHEN M F. Mechanism of enhanced removal of Cr(Ⅵ) by acid and alkali modified biochar nanoscale zero-valent iron[J]. Chinese Journal of Environmental Engineering, 2022,16(4):1165-1174.

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    3. [3]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    4. [4]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(0)
  • Abstract views(42)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return