Citation: Liang MA, Honghua ZHANG, Weilu ZHENG, Aoqi YOU, Zhiyong OUYANG, Junjiang CAO. Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075 shu

Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy

  • Corresponding author: Honghua ZHANG, 15270008537@163.com
  • Received Date: 7 March 2024
    Revised Date: 11 July 2024

Figures(12)

  • Ordered single-layer polystyrene (PS) microsphere arrays were fabricated by using the gas/liquid interface self-assembly method, and then employed as a template, single-layer hexagonal nonclose packed Au nanoparticle arrays were prepared by combining magnetron sputtering deposition method as well as heat treatment technology. Sub-sequently, highly ordered ZIF-8/Au composite nanostructure arrays were successfully obtained by using the hydrothermal method. The growth mechanism of composite nanostructure arrays and the effects of reaction temperature as well as time on the microstructure and optical properties were explored. Moreover, the sensitivity and uniformity of surface-enhanced Raman scattering (SERS) signals obtained from Ag film-decorated nanostructure arrays were further investigated. The results indicated that when the hydrothermal reaction temperature increased from 25 to 100 ℃, the number and size of ZIF-8 nanoparticles gradually increased, and the surface plasmon resonance (SPR) and diffraction peaks both red-shifted. When the hydrothermal reaction time increased from 10 to 60 min, ZIF-8 nanoparticles appeared from selective growth around Au nanoparticles to spread throughout the material surface. After depositing a specific thickness of Ag film onto the obtained array surface, the detection limits of Raman sig-nals from both 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) probe molecules were 10-11 mol·L-1. The SERS peak intensity located at 1 430 cm-1 (4-ATP) and 1 355 cm-1 (R6G) showed a linear relationship with the concentra-tion of each molecular solution, and the correlation coefficients R2 were 0.980 1 and 0.984 4, respectively. The rela-tive standard deviation (RSD) was 8.86% by comparison to the peak intensity located at 1 430 cm-1 obtained from 4-ATP molecules (10-5 mol·L-1) measured at 10 randomly selected positions on the arrays. It indicated that ordered ZIF-8/Au composite nanostructure arrays as SERS enhanced substrate exhibited good stability and uniformity.
  • 加载中
    1. [1]

      Wang H, Carly S, Naomi J H. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates[J]. J. Am. Chem. Soc., 2005,127(43):14992-14993. doi: 10.1021/ja055633y

    2. [2]

      Men D D, Zhou F, Hang L F, Li X Y, Duan G T, Cai W P, Li Y. A functional hydrogel film attached with a 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor[J]. J. Mater. Chem. C, 2016,4(11):2117-2122. doi: 10.1039/C5TC04281J

    3. [3]

      Zhang T, Sun Y Q, Hang L F, Li H L, Liu G Q, Zhang X M, Lyu X J, Cai W P, Li Y. Periodic porous alloyed Au-Ag nanosphere arrays and their highly sensitive SERS performance with good reproducibility and high density of hotspots[J]. ACS Appl. Mater. Interfaces, 2018,10(11):9792-9801. doi: 10.1021/acsami.7b17461

    4. [4]

      Li W J, Xiang J H, Men D D, Zhang H H. 2D Au nanosphere arrays/PVA-PBA-modified-hydrogel composite film for glucose detection with strong diffraction intensity and linear response[J]. Nanomaterials, 2019,9(2)140. doi: 10.3390/nano9020140

    5. [5]

      Kim J K, Shi X J, Jeong M J, Park J, Han H S, Kim S H, Guo Y, Heinz T F, Fan S H, Lee C L, Park J H, Zheng X L. Enhancing Mo: BiVO4 solar water splitting with patterned Au nanospheres by plasmon‑ induced energy transfer[J]. Adv. Energy Mater., 2018,8(5)1701765. doi: 10.1002/aenm.201701765

    6. [6]

      Liu D L, Li C C, Zhou F, Zhang T, Liu G Q, Cai W P, Li Y. Capillary gradient-induced self-assembly of periodic Au spherical nanoparticle arrays on an ultralarge scale via a bisolvent system at air/water interface[J]. Adv. Mater. Interfaces, 2017,4(10)1600976. doi: 10.1002/admi.201600976

    7. [7]

      Jian C C, Zhang J Q, He W M, Ma X C. Au-Al intermetallic compounds: A series of more efficient LSPR materials for hot carriers-based applications than noble metal Au[J]. Nano Energy, 2021,82105763. doi: 10.1016/j.nanoen.2021.105763

    8. [8]

      Tian Y Y, Chen Y C, Chen M, Song Z L, Xiong B, Zhang X B. Peroxidase-like Au@Pt nanozyme as an integrated nanosensor for Ag+ detection by LSPR spectroscopy[J]. Talanta, 2021,221121627. doi: 10.1016/j.talanta.2020.121627

    9. [9]

      Gu M, Liu D, Ding T, Liu X K, Chen T, Shen X Y, Yao T. Plasmon-assisted photocatalytic CO2 reduction on Au decorated ZrO2 catalysts[J]. Dalton Trans., 2021,50(18):6076-6082. doi: 10.1039/D1DT00385B

    10. [10]

      Yu G Y, Qian J, Zhang P, Zhang B, Zhang W X, Yan W F, Liu G. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor[J]. Nat. Commun., 2019,10(1)4912. doi: 10.1038/s41467-019-12853-8

    11. [11]

      WANG C, XIANG J H, ZHANG T, MEN D D, QIU X F, ZHANG H H. Controlled preparation of ordered arrays of Pt nanoparticles with different morphologies and their optical properties[J]. Rare Metal Materials and Engineering, 2018,47(9):2807-2812.

    12. [12]

      Liu J, Goetjen T A, Wang Q N, Knapp J G, Wasson M C, Yang Y, Syed Z H, Delferro M, Notestein J M, Farha O K, Hupp J T. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization[J]. Chem. Soc. Rev., 2022,51(3):1045-1097. doi: 10.1039/D1CS00968K

    13. [13]

      Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF) based and MOF-derived nanocatalysis[J]. Chem. Rev., 2019,120(2):1438-1511.

    14. [14]

      Zhang B, Zheng Y J, Ma T, Yang C D, Peng Y F, Zhou Z H, Zhou M, Li S, Wang Y H, Cheng C. Designing MOF nanoarchitectures for electrochemical water splitting[J]. Adv. Mater., 2021,33(17)2006042. doi: 10.1002/adma.202006042

    15. [15]

      WANG X, WANG J, LIU J S. Preparation and electrochemical properties of cathode material AI-ABTC/RGO@S for lithium sulfur battery[J]. Rare Metal Materials and Engineering, 2022,51(1):190-196.

    16. [16]

      Hang L F, Zhou F, Men D D, Li H L, Li X Y, Zhang H H, Liu G Q, Cai W P, Li C C, Li Y. Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks[J]. Nano Res., 2017,10:2257-2270. doi: 10.1007/s12274-016-1414-1

    17. [17]

      MA T T, LI S M, ZHANG C Y, XU L, BAI Y Y, FU Y L, JI W J, YANG H Y. Nitrogen doped with the preparation of porous carbon and super capacitor performance[J]. Chinese J. Inorg. Chem., 2024,40(4):725-735.

    18. [18]

      Qian Q H, Asinger P A, Lee M J, Han G, Rodriguez K M, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. MOF-based membranes for gas separations[J]. Chem. Rev., 2020,120(16):8161-8266. doi: 10.1021/acs.chemrev.0c00119

    19. [19]

      Wang Y H, Jin H, Ma Q, Mo K, Mao H Z, Feldhoff A, Cao X Z, Li Y S, Pan F S, Jiang Z Y. A MOF glass membrane for gas separation[J]. Angew. Chem., 2020,132(11):4395-4399. doi: 10.1002/ange.201915807

    20. [20]

      Dai H, Yuan X Z, Jiang L B, Wang H, Zhang J, Zhang J J, Xiong T. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective[J]. Coord. Chem. Rev., 2021,441213985. doi: 10.1016/j.ccr.2021.213985

    21. [21]

      Taheri M, Ashok D, Sen T, Enge T G, Verma N K, Tricoli A, Lowe A, Nisbet D, Tsuzuki T. Stability of ZIF-8 nanopowders in bacterial culture media and its implication for antibacterial properties[J]. Chem. Eng. J., 2021,413127511. doi: 10.1016/j.cej.2020.127511

    22. [22]

      Tuncel D, Ökte A N. Improved adsorption capacity and photoactivity of ZnO-ZIF-8 nanocomposites[J]. Catal. Today, 2021,361:191-197. doi: 10.1016/j.cattod.2020.04.014

    23. [23]

      Wang X B, Liu J, Leong S, Lin X C, Wei J, Kong B, Xu Y F, Low Z X, Yao J F, Wang H T. Rapid construction of ZnO@ZIF-8 heterostructures with size selective photocatalysis properties[J]. ACS Appl. Mater. Interfaces, 2016,8(14):9080-9087. doi: 10.1021/acsami.6b00028

    24. [24]

      Panchariya D K, Rai R K, Kumar E A, Singh S K. Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage[J]. ACS Omega, 2018,3(1):167-175. doi: 10.1021/acsomega.7b01693

    25. [25]

      Kumari G, Jayaramulu K, Maji T K, Narayana C. Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study[J]. J. Phys. Chem., 2013,117(43):11006-11012. doi: 10.1021/jp407792a

    26. [26]

      Wa ng, Q X, Sun Y, Li S F, Zhang P P, Yao Q Q. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy[J]. RSC Adv., 2020,10(62):37600-37620. doi: 10.1039/D0RA07950B

    27. [27]

      Yang K, Zong S F, Zhang Y Z, Qian Z T, Liu Y, Zhu K, Li L, Li N, Wang Z Y, Cui Y P. Array-assisted SERS microfluidic chip for highly-sensitive and multiplex gas sensing[J]. ACS Appl. Mater., 2019,12(1):1395-1403.

    28. [28]

      Xia Z P, Li D, Deng W. Identification and detection of volatile aldehydes as lung cancer biomarkers by vapor generation combined with paper-based thin film microextraction[J]. Anal. Chem., 2021,93(11):4924-4931. doi: 10.1021/acs.analchem.0c05348

    29. [29]

      Zhu J, Zhang S, Weng G J, Li J J, Zhao J W. Spiky yolk-shell AuAg bimetallic nanorods with uniform interior gap for the SERS detection of thiram residues in fruit juice[J]. Spectrochim. Acta. Part A, 2021,262120108. doi: 10.1016/j.saa.2021.120108

    30. [30]

      Li X L, Zhang Y Z, Shen Z X, Fan H G. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced Raman scattering[J]. Small, 2012,8(16):2548-2554. doi: 10.1002/smll.201200576

    31. [31]

      Dong S, Shi Q Y, He K L, Wu J W, Zhu Z X, Feng J G. A simple aptamer SERS sensor based on mesoporous silica for the detection of chlorpyrifos[J]. Foods, 2022,11(21)3331. doi: 10.3390/foods11213331

    32. [32]

      Qin Y Z, Mo F, Yao S, Wu Y Z, He Y S, Yao W X. Facile synthesis of porous Ag crystals as SERS sensor for detection of five methamphetamine analogs[J]. Molecules, 2022,27(12)3939. doi: 10.3390/molecules27123939

    33. [33]

      Zhang H H, Wang C, Li H L, Jiang L F, Men D D, Wang J, Xiang J H. Physical process-aided fabrication of periodic Au-M (M=Ag, Cu, Ag-Cu) alloyed nanoparticle arrays with tunable localized surface plasmon resonance and diffraction peaks[J]. RSC Adv., 2018,8(17):9134-9140. doi: 10.1039/C7RA13567J

    34. [34]

      Saliba D, Ammar M, Rammal M, Al-Ghoul M, Hmadeh M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives[J]. J. Am. Chem. Soc., 2018,140(5):1812-1823. doi: 10.1021/jacs.7b11589

    35. [35]

      Venna S R, Jasinski J B, Carreon M A. Structural evolution of zeolitic imidazolate framework-8[J]. J. Am. Chem. Soc., 2010,132(51):18030-18033. doi: 10.1021/ja109268m

    36. [36]

      Xie S Y, Chen D, Gu C J, Jiang T, Zeng S W, Wang Y Y, Ni Z H, Shen X, Zhou J. Molybdenum oxide/tungsten oxide nano-heterojunction with improved surface-enhanced Raman scattering performance[J]. ACS Appl. Mater. Interfaces, 2021,13(28):33345-33353. doi: 10.1021/acsami.1c03848

    37. [37]

      Yu L, Feng L X, Xiong L, Li S, Xu Q, Pan X Y, Xiao Y X. Multifunctional nanoscale lanthanide metal organic framework based ratiometric fluorescence paper microchip for visual dopamine assay[J]. Nanoscale, 2021,13(25):11188-11196.

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    9. [9]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

Metrics
  • PDF Downloads(0)
  • Abstract views(40)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return