Citation: Xin XIONG, Qian CHEN, Quan XIE. First principles study of the photoelectric properties and magnetism of La and Yb doped AlN[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064 shu

First principles study of the photoelectric properties and magnetism of La and Yb doped AlN

  • Corresponding author: Qian CHEN, chenzhangqianer@163.com
  • Received Date: 27 February 2024
    Revised Date: 12 June 2024

Figures(12)

  • To explore the potential application of AlN in optoelectronic devices, based on density functional theory, the photoelectric properties and magnetic properties of intrinsic AlN and rare-earth elements La, Yb doped AlN system were calculated by first principles. The calculation results showed that the intrinsic AlN band gap was 6.060 eV. After the addition of La and Yb, impurity levels were generated at the bottom of the conduction band, which makes the excitation energy required for electrons to be brought from valence to the conduction band lower, which is conducive to the optical transition and improves the optical properties of AlN. Spin-up and spin-down valence bands split after Yb doping, indicating that Yb doping produces magnetism. When La and Yb substitution were doped with AlN, the edge of the absorption band moved to the left in the direction of low energy, and the redshift phenomenon occurred. After doping La and Yb, the static dielectric constant of the AlN system increased from 4.63 to 5.14 and 280.44, respectively, indicating that doping enhances the high voltage resistance of the system. The static refractive index increased from 2.12 to 2.26 and 17.06 respectively, which improves the optical properties of AlN.
  • 加载中
    1. [1]

      Nakamura S, Senoh M, Iwasa N, Nagahama S, Yamada T, Mukai T. Superbright green InGaN single-quantum-well-structure light-emitting diodes[J]. Jpn. J. Appl. Phys., 1995,34(10B):L1332-L1335. doi: 10.1143/JJAP.34.L1332

    2. [2]

      Fabien C A M, Maros A, Honsberg C B, Doolittle W A. Ⅲ-nitride double-heterojunction solar cells with high in-content InGaN absorbing layers: Comparison of large-area and small-area devices[J]. IEEE J. Photovolt., 2016,6(2):460-464. doi: 10.1109/JPHOTOV.2015.2504790

    3. [3]

      Su Y K, Chiou Y Z, Juang F S, Chang S J, Sheu J K. GaN and InGaN metal-semiconductor-metal photodetectors with different schottky contact metals[J]. Jpn. J. Appl. Phys., 2001,40(4S):2996-2999. doi: 10.1143/JJAP.40.2996

    4. [4]

      Ahmad H, Motoki K, Clinton E A, Matthews C M, Engel Z, Doolittle W A. Comprehensive analysis of metal modulated epitaxial GaN[J]. ACS Appl. Mater. Interfaces, 2020,12(33):37693-37712. doi: 10.1021/acsami.0c09114

    5. [5]

      Skierbiszewski C, Turski H, Muziol G, Siekacz M, Sawicka M, Cywiński G, Wasilewski Z R, Porowski S. Nitride-based laser diodes grown by plasma-assisted molecular beam epitaxy[J]. J. Phys. D-Appl. Phys., 2014,47(7)073001. doi: 10.1088/0022-3727/47/7/073001

    6. [6]

      Feneberg M, Leute R A R, Neuschl B, Thonke K, Bickermann M. High-excitation and high-resolution photoluminescence spectra of bulk AlN[J]. Phys. Rev. B, 2010,82(7)075208. doi: 10.1103/PhysRevB.82.075208

    7. [7]

      Persson C, Ferreira D S A, Ahuja R, Johansson B. Effective electronic masses in wurtzite and zinc-blende GaN and AlN[J]. J. Cryst. Growth, 2001,231(3):397-406. doi: 10.1016/S0022-0248(01)01470-1

    8. [8]

      Ahmad H, Lindemuth J, Engel Z, Matthews C M, McCrone T M, Doolittle W A. Substantial p-type conductivity of AlN achieved via beryllium doping[J]. Adv. Mater., 2021,33(42)2104497. doi: 10.1002/adma.202104497

    9. [9]

      Wu Q Y, Huang Z G, Wu R, Chen L J. Cu-doped AlN: A dilute magnetic semiconductor free of magnetic cations from first-principles study[J]. J. Phys.-Condes. Matter, 2007,19(5)056209. doi: 10.1088/0953-8984/19/5/056209

    10. [10]

      Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering[J]. Adv. Mater., 2009,21(5):593-596. doi: 10.1002/adma.200802611

    11. [11]

      Lei W W, Liu D, Chen X, Zhu P W, Cui Q L, Zou G T. Ferromagnetic properties of Y-doped AlN nanorods[J]. J. Phys. Chem. C, 2010,114(37):15574-15577. doi: 10.1021/jp102375e

    12. [12]

      TAI Z W. Study on the first-principles of scandium and erbium doped aluminum nitride thin films. Chengdu: School of Electronics Science and Engineering, 2018: 19-39

    13. [13]

      Saib S, Bouarissa N, Rodríguez H P, Muñoz A. First-principles study of high-pressure phonon dispersions of wurtzite, zinc-blende, and rocksalt AlN[J]. J. Appl. Phys., 2008,103(1)013506. doi: 10.1063/1.2828151

    14. [14]

      ZHOU L. First-principles Study on Doped Aluminium Nitride. Chongqing: Chongqing University of Technology, 2021: 2-7

    15. [15]

      Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. First-principles simulation: ideas, illustrations and the castep code[J]. J. Phys.-Condes. Matter., 2002,14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301

    16. [16]

      Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    17. [17]

      WANG L J, NIE Z X. First-principles study on the electronic structure and optical properties of C-doped AlN[J]. J. At. Mol. Phys., 2019,36(1):116-122.

    18. [18]

      Jiang H, Wang X H, Fan G F, Lei W, Fu M, Wang X C, Liang F, Lu W Z. Effect of hot-pressing sintering on thermal and electrical properties of AlN ceramics with impedance spectroscopy and dielectric relaxations analysis[J]. J. Eur. Ceram. Soc., 2019,39(16):5174-5180. doi: 10.1016/j.jeurceramsoc.2019.08.029

    19. [19]

      ZHANG R L, LU S S, XIAO Q Q, XIE Q. First-principles study on electronic structure and optical properties of Lu-doped AlN[J]. Chinese J. Inorg. Chem., 2023,39(1):150-158.  

    20. [20]

      Monkhorst H J, Pack J D. Special points for brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    21. [21]

      DAI S L, LIANG Y C, MA J J. First-principles study on Mg2Ge doping with transition metal elements Sc, Cr, and Mn[J]. Chinese J. Inorg. Chem., 2022,38(4):637-644.  

    22. [22]

      CHENG Y H, MA X G, HUANG C Y, LIAO J J, DUAN W Y. First-principles study of adsorption and diffusion behaviors of Li-ion on boron-doped MoSi2N4 monolayer[J]. Chinese J. Inorg. Chem., 2021,37(12):2167-2174.  

    23. [23]

      Brown G F, Wu J. Third generation photovoltaics[J]. Laser Photon. Rev., 2009,3(4):394-405. doi: 10.1002/lpor.200810039

    24. [24]

      Sun J, Wang H T, He J L, Tian Y J. Ab initio investigations of optical properties of the high-pressure phases of ZnO[J]. Phys. Rev. B, 2005,71(12)125132. doi: 10.1103/PhysRevB.71.125132

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    15. [15]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    16. [16]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    17. [17]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    18. [18]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

Metrics
  • PDF Downloads(0)
  • Abstract views(264)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return