Citation: Jingke LIU, Jia CHEN, Yingchao HAN. Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060 shu

Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance

  • Corresponding author: Yingchao HAN, hanyingchao@whut.edu.cn
  • Received Date: 25 February 2024
    Revised Date: 10 June 2024

Figures(14)

  • To improve the adsorption performance of nano-hydroxyapatite (HAP) as a heavy metal ion adsorbent, the polymer-induced liquid-like precursor mineralization process in the human body was simulated. A stable suspended nano HAP system was prepared by hydrothermal method using polyacrylic acid (PAA) as a regulator. The effects of R (the ratio of the amount of substance of COOH in PAA to Ca), reaction pH, and hydrothermal temperature on the prepared nano HAP were investigated. The optimized synthesis conditions for nano HAP were R=1, pH=9.00, 180 ℃, which is a spindle-shaped structure composed of small particles and stably suspended while maintaining several tens of nanoparticle sizes. Subsequently, the effects of adsorption time, initial metal ion concentration, pH of adsorption environment, and suspension on the Co2+ adsorption performance of nano HAP were investigated. The adsorption results indicate that the adsorption kinetics follow a pseudo-second-order kinetic model, and the adsorption process includes surface adsorption and intra-particle diffusion. The linear equation fitting results of the Freun-dlich and Langmuir models had a high degree of agreement with the experimental results. The adsorption belongs to the chemical adsorption of nonuniform adsorbents, and the linear fitting result of the Langmuir model corresponding to the maximum adsorption amount was 229.358 mg·g-1. The removal rate of Co2+ increased with the increase of adsorption environment pH (6.48-9.00), and the main adsorption mechanism was surface coordination reaction. The adsorption capacity of the prepared nano HAP suspension was significantly better than that of the non-suspended control nano HAP. The addition of PAA enhances the adsorption capacity of nano HAP.
  • 加载中
    1. [1]

      Guo Y A, Wang C S, Qin X Z, Lai W H, Zhou L Z. Microstructure and mechanical properties of a cobalt-based superalloy used for nuclear power station//Materials Science Forum. [S. 1. ]: Trans. Tech. Publications Ltd., 2015, 816: 529-533

    2. [2]

      Marie K, Božena P, Jiří D, Král P, Jiří Z, Karel H, Zyka J, Hrbacek K, Sklenicka V. Creep damage mechanisms in cast cobalt superalloys for applications in glass industry//Key Engineering Materials. [S. 1. ]: Trans. Tech. Publications Ltd., 2018, 774(1): 173-178

    3. [3]

      HAN M F, GU J, XUE S D, ZHU S J, HUANG R S. Preparation and properties of platinum-cobalt-manganese alloy catalysts for fuel cells[J]. Chinese J. Inorg. Chem., 2023,39(7):1253-1260.

    4. [4]

      WU M J. Cobalt and human health[J]. Studies of Trace Elements and Health, 2013,30(4):61-62.

    5. [5]

      Djingova R, Kuleff I. Concentration of caesium-137, cobalt-60 and potassium-40 in some wild and edible plants around the nuclear power plant in Bulgaria[J]. J. Environ. Radioact., 2002,59(1):61-73. doi: 10.1016/S0265-931X(01)00036-4

    6. [6]

      WU L S, HE Y, SUN X F, HUANG Y J, LI Y, LIU T, ZENG F, CHEN C F, SHANGGUAN Z H, YANG Z Q. Determination of gross beta activity excluding 40K in seawater around nuclear power plant by cobalt sulfide coprecipitation method[J]. Atomic Energy Science and Technology, 2022,56(1):15-21.

    7. [7]

      Dabrowski A, Hubicki Z, Podkoscielny P, Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004,56(2):91-106. doi: 10.1016/j.chemosphere.2004.03.006

    8. [8]

      WANG J L, LIU H Y. Research progress in membrane treatment technology for radioactive wastewater[J]. Acta Scientiae Circumstantiae, 2013,33(10):2639-2656.

    9. [9]

      Abdelbasir S M, Shewaikh A M, Sheikh S M, Ali O I. Novel modified chitosan nanocomposites for Co(Ⅱ) ions removal from industrial wastewater[J]. J. Water Process. Eng., 2021,41102008. doi: 10.1016/j.jwpe.2021.102008

    10. [10]

      Nayak A, Bhushan B. Hydroxyapatite as an advanced adsorbent for removal of heavy metal ions from water: Focus on its applications and limitations[J]. Mater. Today Proc., 2021,46(20):11029-11034.

    11. [11]

      Sundaram C S, Viswanathan N, Meenakshi S. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies[J]. J. Hazard. Mater., 2008,155(1):206-215.

    12. [12]

      Lin K L, Pan J Y, Chen Y W, Cheng R M, Xu X C. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders[J]. J. Hazard. Mater., 2009,161(1):231-240. doi: 10.1016/j.jhazmat.2008.03.076

    13. [13]

      Ma B, Shin W S, Oh S, Park Y J, Choi S J. Adsorptive removal of Co and Sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles[J]. Sep. Sci. Technol., 2010,45(4):453-462. doi: 10.1080/01496390903484941

    14. [14]

      Prasad P S, Marupalli B C G, Das S, Das K. Surfactant-assisted synthesis of hydroxyapatite particles: A comprehensive review[J]. J. Mater. Sci., 2023,58(14):6076-6105. doi: 10.1007/s10853-023-08366-x

    15. [15]

      Currey J D. Materials science-Hierarchies in biomineral structures[J]. Science, 2005,309(5732):253-254. doi: 10.1126/science.1113954

    16. [16]

      Gebauer D, Coelfen H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011,6(6):564-584. doi: 10.1016/j.nantod.2011.10.005

    17. [17]

      Qin D, He Z, Li P, Zhang S T. Liquid-liquid phase separation in nucleation process of biomineralization[J]. Front. Chem., 2022,10834503. doi: 10.3389/fchem.2022.834503

    18. [18]

      Guo J L, Han Y C, Mao Y T, Wickramaratne M N. Influence of alginate fixation on the adsorption capacity of hydroxyapatite nanocrystals to Cu2+ ions[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2017,529:801-807. doi: 10.1016/j.colsurfa.2017.06.075

    19. [19]

      Ding H C, Pan H H, Xu X R, Tang R K. Towards a detailed understanding of magnesium ions on hydroxyapatite crystallization inhibition[J]. Cryst. Growth Des., 2014,14(2):763-769. doi: 10.1021/cg401619s

    20. [20]

      Kirwan L J, Fawell P D, Van B W. In situ FTIR-ATR examination of poly (acrylic acid) adsorbed onto hematite at low pH[J]. Langmuir, 2003,19(14):5802-5807. doi: 10.1021/la027012d

    21. [21]

      De A P N, Santos C, Pazo A. Vibrational properties of calcium phosphate compounds. 1. Raman spectrum of β-tricalcium phosphate[J]. Chem. Mater., 1997,9(4):9-17.

    22. [22]

      Chen J, Liu J W, Deng H S, Yao S, Wang Y F. Regulatory synthesis and characterization of hydroxyapatite nanocrystals by a microwave-assisted hydrothermal method[J]. Ceram. Int., 2020,46(2):2185-2193. doi: 10.1016/j.ceramint.2019.09.203

    23. [23]

      Ding Z Y, Xing Q G, Fan Y R, Song Q F, Song C H, Han Y C. Polyacrylic acid complexes to mineralize ultrasmall europium-doped calcium phosphate nanodots for fluorescent bioimaging[J]. Mater. Des., 2022,221111008. doi: 10.1016/j.matdes.2022.111008

    24. [24]

      Sun Z H, Chen J, Ding Z Y, Fan Y R, Han Y C. Spindle‑like‑ aggregating behavior of hydroxyapatite nanorods in polyacrylic acid aqueous system[J]. Colloids Surf. A: Phys. Eng. Asp, 2022,634127933. doi: 10.1016/j.colsurfa.2021.127933

    25. [25]

      Wang L C, Zhao W D, Che Y, Gou R K, Liu H B, Zhu C G, Wang L B, Guan Z. Effect of degree of deprotonation of maleic anhydride-allyl polyethoxy carboxylic acid copolymer on calcium scale[J]. J. Appl. Polym. Sci., 2020,137(46)49511. doi: 10.1002/app.49511

    26. [26]

      Gupta N, Kushwaha A K, Chattopadhyaya M C. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution[J]. J. Taiwan Inst. Chem. Eng., 2012,43(1):125-131.

    27. [27]

      Zhu R H, Yu R B, Yao J X, Mao D, Xing C J, Wang D. Removal of Cd2+ from aqueous solutions by hydroxyapatite[J]. Catal. Today, 2008,139(1):94-99.

    28. [28]

      Balasooriya I L, Chen J, Gedara S M K, Han Y C, Wickramaratne M N. Applications of nano hydroxyapatite as adsorbents: A review[J]. Nanomaterials, 2022,12(14)2324. doi: 10.3390/nano12142324

    29. [29]

      Huang Y, Chen L, Wang H. Removal of Co(Ⅱ) from aqueous solution by using hydroxyapatite[J]. J. Radioanal. Nucl. Chem., 2012,291(3):777-785. doi: 10.1007/s10967-011-1351-0

    30. [30]

      Smiciklas I, Dimović S, Mitrić M. Removal of Co2+ from aqueous solutions by hydroxyapatite[J]. Water Res., 2006,40(12):2267-2274. doi: 10.1016/j.watres.2006.04.031

    31. [31]

      Foroutan R, Oujifard A, Papari F, Esmaeili H. Calcined umbonium vestiarium snail shell as an efficient adsorbent for treatment of wastewater containing Co(Ⅱ). 3[J]. Biotech, 2019,9(3)78.

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(0)
  • Abstract views(35)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return