Citation: Cuiwu MO, Gangmin ZHANG, Chao WU, Zhipeng HUANG, Chi ZHANG. A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045 shu

A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response

Figures(7)

  • Two alkali-metal sulfamates nonlinear optical (NLO) crystals, Li(NH2SO3) and Na(NH2SO3), have been obtained through the facile evaporation method. Li(NH2SO3) crystallizes in the polar space group Pca21 (No.29). The structure of Li(NH2SO3) can be described as a 3D network formed by [LiO4]7- polyhedral connecting with NH2SO3- tetrahedra through corner-sharing. Na(NH2SO3) crystallizes in the polar space group P212121 (No.19). The structure of Na(NH2SO3) can be described as a 3D network formed by distorted [NaO6]11- octahedral connecting with NH2SO3- tetrahedra through corner-sharing. The UV-Vis-near-infrared spectra demonstrate that Li(NH2SO3) and Na(NH2SO3) possessed large optical band gaps of 5.25 and 4.81 eV, respectively. Powder second-harmonic generation (SHG) measurements demonstrate that the SHG intensity of Li(NH2SO3) and Na(NH2SO3) were 0.32 times and 0.31 times that of KH2PO4, respectively. First-principles calculations confirm the nonlinear optical performance mainly derived from the synergistic effect of amino sulfonate anions and alkali metal oxide anionic polyhedra.
  • 加载中
    1. [1]

      Cyranoski D. Materials science: China's crystal cache[J]. Nature, 2009,457(7232):953-955. doi: 10.1038/457953a

    2. [2]

      Mutailipu M, Zhang M, Yang Z H, Pan S L. Targeting the next generation of deep-ultraviolet nonlinear optical materials: Expanding from borates to borate fluorides to fluorooxoborates[J]. Acc. Chem. Res., 2019,52(3):791-801. doi: 10.1021/acs.accounts.8b00649

    3. [3]

      Wu H P, Pan S L, Poeppelmeier K R, Li Y H, Jia D Z, Chen Z C, Fan X Y, Yang Y, Rondinelli J M, Luo S H. K3B6O10Cl: A new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge[J]. J. Am. Chem. Soc., 2011,133(20):7786-7790. doi: 10.1021/ja111083x

    4. [4]

      Wu H P, Yu H W, Pan S L, Huang Z J, Yang Z H, Su X, Poeppelmeier K R. Cs2B4SiO9: A deep-ultraviolet nonlinear optical crystal. Angew[J]. Chem., Int. Ed., 2013,52(12):3406-3410. doi: 10.1002/anie.201209151

    5. [5]

      Zhao S G, Gong B F, Bai L, Xu X, Zhang S Q, Sun Z H, Lin Z S, Hong M C, Chen C T, Luo J H. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications[J]. Nat. Commun., 2014,5(1)4019. doi: 10.1038/ncomms5019

    6. [6]

      Wu B, Tang D, Ye N, Chen C T. Linear and nonlinear optical properties of the KBe2BO3F2(KBBF) crystal[J]. Opt. Mater., 1996,5(5/6)105109.

    7. [7]

      Chen C T. Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal[J]. Opt. Mater., 2004,26(4):425-429. doi: 10.1016/j.optmat.2004.02.007

    8. [8]

      Chen C T, Wang G L, Wang X Y, Zhu Y, Xu Z Y, Kanai T, Watanabe S. Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal[J]. IEEE. J. Quantum Electron., 2008,44(7):617-621. doi: 10.1109/JQE.2008.920324

    9. [9]

      Chen C T, Wu B C, Jiang A D, You G M. A new-type ultraviolet SHG crystal β-BaB2O4[J]. Scientia Sinica Series B-Chemical Biological Agricultural Medical & Earth Science, 1985,28(3):235-243.

    10. [10]

      Chen C T, Wu Y C, Jiang A D, Wu B C, You G M, Li R K, Lin S J. New nonlinear-optical crystal: LiB3O5[J]. J. Opt. Soc. Am. B-Opt. Phys., 1989,6(4):616-621. doi: 10.1364/JOSAB.6.000616

    11. [11]

      Wu Y C, Sasaki T, Nakai N, Yokotani A H, Tang H G, Chen C T. CsB3O5: A new nonlinear optical crystal[J]. Appl. Phys. Lett., 1993,62(21):2614-2615. doi: 10.1063/1.109262

    12. [12]

      Ward J F, Franken P A. Structure of nonlinear optical phenomena in potassium dihydrogen phosphate[J]. Phys. Rev., 1964,133(1A):183-190. doi: 10.1103/PhysRev.133.A183

    13. [13]

      Lavrovskaya O I, Pavlova N I, Tarasov A V. Second harmonic generation of light from an AlG: Nd3+ laser in an optically biaxial crystal of KTiOPO4[J]. Sov. Phys. Crystallogr., 1986,31:1145-1151.

    14. [14]

      Okorogu A O, Mirov S B, Lee W, Crouthamel D I, Jenkins N, Dergachev A Y, Vodopyanov K L, Badikov V V. Tunable middle infrared down conversion in GaSe and AgGaS2[J]. Opt. Commun., 1998,155(4/5/6):307-312.

    15. [15]

      Guo S P, Chi Y, Guo G C. Recent achievements on middle and farinfrared second-order nonlinear optical materials[J]. Coord. Chem. Rev., 2017,335:44-57. doi: 10.1016/j.ccr.2016.12.013

    16. [16]

      Tran T T, Yu H W, Rondinelli J M, Poeppelmeier K R, Halasyamani P S. Deep ultraviolet nonlinear optical materials[J]. Chem. Mater., 2016,28(15):5238-5258. doi: 10.1021/acs.chemmater.6b02366

    17. [17]

      Cavalieri A L, Muller N, Uphues T, Yakovlev V X, Baltuska A, Horvath B, Schmidt B, Blumel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U. Attosecond spectroscopy in condensed matter[J]. Nature, 2007,449(7165):1029-1032. doi: 10.1038/nature06229

    18. [18]

      Yao W J, He R, Wang X Y, Lin Z S, Chen C T. Analysis of deep-UV nonlinear optical borates: approaching the end[J]. Adv. Opt. Mater., 2014,2(5):411-417. doi: 10.1002/adom.201300535

    19. [19]

      Liu Y C, Shen Y G, Zhao S G, Luo J H. Structure-property relationship in nonlinear optical materials with π-conjugated CO3 triangles[J]. Coord. Chem. Rev., 2020,407213152. doi: 10.1016/j.ccr.2019.213152

    20. [20]

      Liu X M, Gong P F, Yang Y, Song G M, Lin Z S. Nitrate nonlinear optical crystals: A survey on structure-performance relationships[J]. Coord. Chem. Rev., 2019,400213045. doi: 10.1016/j.ccr.2019.213045

    21. [21]

      Shi G Q, Wang Y, Zhang F F, Zhang B B, Yang Z H, Hou X L, Pan S L, Poeppelmeier K R. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. J. Am. Chem. Soc., 2017,139(31):10645-10648. doi: 10.1021/jacs.7b05943

    22. [22]

      Zhang Z Z, Wang Y, Zhang B B, Yang Z H, Pan S L. Polar fluoro-oxoborate, NaB4O6F: A promising material for ionic conduction and nonlinear optics[J]. Angew. Chem. Int. Ed., 2018,57(22):6577-6581. doi: 10.1002/anie.201803392

    23. [23]

      Tran T T, He J G, Rondinelli J M, Halasyamani P S. RbMgCO3F: A new deep-ultraviolet nonlinear optical material[J]. J. Am. Chem. Soc., 2015,137(33):10504-10507. doi: 10.1021/jacs.5b06519

    24. [24]

      Peng G, Lin C S, Ye N. NaZnCO3(OH): A high-performance carbonate ultraviolet nonlinear optical crystal derived from KBe2BO3F2[J]. J. Am. Chem. Soc., 2020,142(49):20542-20546. doi: 10.1021/jacs.0c09866

    25. [25]

      Huang L, Zou G H, Cai H Q, Wang S C, Lin C S, Ye N. Sr2(OH)3NO3: The first nitrate as a deep UV nonlinear optical material with large SHG responses[J]. J. Mater. Chem. C, 2015,3(20):5268-5274. doi: 10.1039/C5TC00344J

    26. [26]

      Zou G H, Lin C S, Kim G H, Jo H, Ok K M. Rb2Na (NO3)3: A congruently melting UV-NLO crystal with a very strong second-harmonic generation response[J]. Crystals, 2016,6(4)42. doi: 10.3390/cryst6040042

    27. [27]

      Yu P, Wu L M, Zhou L J, Chen L. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X=Cl, Br)[J]. J. Am. Chem. Soc., 2014,136(1):480-487. doi: 10.1021/ja411272y

    28. [28]

      Zhao S G, Gong P F, S , Luo S Y, Bai L, Lin Z S, Ji C M, Chen T L, Hong M C, Luo J H. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of[PO4]3- units[J]. J. Am. Chem. Soc., 2014,136(24):8560-8563. doi: 10.1021/ja504319x

    29. [29]

      Li L, Wang Y, Lei B H, Han S J, Yang Z H, Poeppelmeier K R, Pan S L. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response[J]. J. Am. Chem. Soc., 2016,138(29):9101-9104. doi: 10.1021/jacs.6b06053

    30. [30]

      Li Y Q, Liang F, Zhao S G, Li L N, Wu Z Y, Ding Q R, Liu S, Lin Z S, Hong M C, Luo J H. Two non-π-conjugated deep-UV nonlinear optical sulfates[J]. J. Am. Chem. Soc., 2019,141(9):3833-3837. doi: 10.1021/jacs.9b00138

    31. [31]

      Sha H Y, Xu J X, Xiong Z Y, Wang Z J, Su R B, He C, Yang X M, Long X F, Liu Y. An optimized KBe2BO3F2-Like structure: The unity of deep-ultraviolet transparency, nonlinear optical property, and ferroelectricity[J]. Adv. Opt. Mater., 2022,10(15)2200228. doi: 10.1002/adom.202200228

    32. [32]

      Wu C, Jiang C B, Wei G F, Jiang X X, Wang Z J, Lin Z S, Huang Z P, Humphrey M G, Zhang C. Toward large second-harmonic generation and deep-UV transparency in strongly electropositive transition metal sulfates[J]. J. Am. Chem. Soc., 2022,145(5):3040-3046.

    33. [33]

      Wang Y, Zhang B B, Yang Z H, Pan S L. Cation-tuned synthesis of fluorooxoborates: Towards optimal Deep-ultraviolet nonlinear optical materials[J]. Angew. Chem. Int. Ed., 2018,130(8):2150-2154.

    34. [34]

      Zhang B B, Han G P, Wang Y, Chen X L, Yang Z H, Pan S L. Expanding frontiers of ultraviolet nonlinear optical materials with fluorophosphates[J]. Chem. Mater., 2018,30(15):5397-5403. doi: 10.1021/acs.chemmater.8b02223

    35. [35]

      Wu M F, Feng J W, Xie W C, Tudi A, Chu D D, Lu J J, Pan S L, Yang Z H. From phosphate fluoride to fluorophosphate: Design of novel ultraviolet/deep-ultraviolet nonlinear optical materials for BePO3F with optical property enhancement[J]. ACS Appl. Mater. Interfaces, 2022,14(34):39081-39090. doi: 10.1021/acsami.2c12001

    36. [36]

      Ding Q R, Liu X M, Zhao S G, Wang Y S, Li Y Q, Li L N, Liu S, Lin Z S, Hong M C, Luo J H. Designing a deep-UV nonlinear optical fluorooxosilicophosphate[J]. J. Am. Chem. Soc., 2020,142(14):6472-6476. doi: 10.1021/jacs.0c00060

    37. [37]

      Han G P, Lei B H, Yang Z H, Wang Y, Pan S L. A fluorooxosilicophosphate with an unprecedented SiO2F4 species[J]. Angew. Chem. Int. Ed., 2018,57(31):9828-9832. doi: 10.1002/anie.201805759

    38. [38]

      Hao X, Luo M, Lin C S, Peng G, Xu F, Ye N. M (NH2SO3)2(M=Sr, Ba): Two deep-ultraviolet transparent sulfamates exhibiting strong second harmonic generation responses and moderate birefringence[J]. Angew. Chem. Int. Ed., 2021,60(14):7621-7625. doi: 10.1002/anie.202016372

    39. [39]

      Sheldrick G M. SHELXS-97: Program for the solution of crystal structures. University of Göttingen, Germany, 1997.

    40. [40]

      Johnson T J, Bernacki B E, Redding R L, Su Y F, Brauer C S, Myers T L, Stephan E G. Intensity-value corrections for integrating sphere measurements of solid samples measured behind glass[J]. Appl. Spectrosc., 2014,68(11):1224-1234. doi: 10.1366/13-07322

    41. [41]

      Kurtz S K, Perry T T. A powder technique for the evaluation of non-linear optical materials[J]. J. Appl. Phys., 1968,39(8):3798-3813. doi: 10.1063/1.1656857

    42. [42]

      Clark S J, Segall M, Pickard C J, Hasnip P J, Probert M, Refson K, Payne M C. First principles methods using CASTEP[J]. Z. Kristall., 2005,220(5/6):567-570.

    43. [43]

      Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients[J]. Rev. Mod. Phys., 1992,64(4):1045-1097. doi: 10.1103/RevModPhys.64.1045

    44. [44]

      Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1998,77(18):3865-3868.  

    45. [45]

      Perdew J P, Wang Y.. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas[J]. Phys. Rev. B, 1992,46(20):12947-12954. doi: 10.1103/PhysRevB.46.12947

    46. [46]

      Hamann D R, Schlüter M, Chiang C. Norm-conserving pseudopoten-tials[J]. Phys. Rev. Lett., 1979,43(20):1494-1497. doi: 10.1103/PhysRevLett.43.1494

    47. [47]

      Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    48. [48]

      Godby R W, Schlüter M, Sham L J. Trends in self-energy operators and their corresponding exchange-correlation potentials[J]. Phys. Rev. B, 1987,36(12):6497-6500. doi: 10.1103/PhysRevB.36.6497

    49. [49]

      Okoye C M I. Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase[J]. J. Phys.-Condes. Matter, 2003,15(35):5945-5958. doi: 10.1088/0953-8984/15/35/304

  • 加载中
    1. [1]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    2. [2]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    3. [3]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    4. [4]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    5. [5]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    6. [6]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    7. [7]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    10. [10]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    11. [11]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    12. [12]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    13. [13]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    14. [14]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    15. [15]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    16. [16]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    17. [17]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    18. [18]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    19. [19]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    20. [20]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(0)
  • Abstract views(393)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return