Citation: Yan LIU, Jiaxin GUO, Song YANG, Shixian XU, Yanyan YANG, Zhongliang YU, Xiaogang HAO. Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043 shu

Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film

Figures(11)

  • A high electroactive hybrid film of CoNi-layered double hydroxide grown on graphene (CoNi-LDH/G) with a three-dimensional (3D) flower-like structure was successfully prepared by using two-step coating and electro-deposition method, and applied to separate and recover low concentrated phosphate anions from wastewater via electrically switched ion exchange. The morphology, composition, and structure of the CoNi-LDH/G hybrid film were demonstrated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The effect of absorption potentials, initial phosphate concentrations, co-existing anions, and pH on the phosphate electrochemistry adsorption performance of the hybrid film was also investigated. The experimental results indicated that the hybrid film had a high adsorption performance by adjusting the redox potential, even at low concentrations. In addition, it can be used in a wide pH range (4-10), and its adsorption capacity for PO43- was little affected by coexisting ions and their variations in concentration. Further-more, the adsorption capacity of G and CoNi-LDH for PO43- was 1.10 and 11.74 mg·g-1, respectively. Moreover, the sum of these two was also lower than that of the CoNi-LDH/G hybrid film (16.25 mg·g-1). Combined with O1s XPS analysis, it was found that PO43- adsorption on CoNi-LDH/G hybrid film aside from interlayer ion exchange, complexation ligand exchange between PO43- and layer-plate metal ions, the synergistic effects between G and CoNiLDH also existed.
  • 加载中
    1. [1]

      Zahed M A, Salehi S, Tabari Y, Farraji H, Ataei‑Kachooei S, Zinatizadeh A A, Kamali N, Mahjouri M. Phosphorus removal and recovery: State of the science and challenges[J]. Environ. Sci. Pollut. Res., 2022,29(39):58561-58589. doi: 10.1007/s11356-022-21637-5

    2. [2]

      Belarbi Z, Daramola D A, Trembly J P. Bench-scale demonstration and thermodynamic simulations of electrochemical nutrient reduction in wastewater via recovery as struvite[J]. J. Electrochem. Soc., 2020,167(15)155524. doi: 10.1149/1945-7111/abc58f

    3. [3]

      Childers D L, Corman J, Edwards M, Elser J J. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle[J]. Bioscience, 2011,61(2):117-124. doi: 10.1525/bio.2011.61.2.6

    4. [4]

      Wang Y C, Kuntke P, Saakes M, van der Weijden R D, Buisman C J N, Lei Y. Electrochemically mediated precipitation of phosphate minerals for phosphorus removal and recovery: Progress and perspective[J]. Water Res., 2022,209117891. doi: 10.1016/j.watres.2021.117891

    5. [5]

      Bhambri A, Karn S K. Biotechnique for nitrogen and phosphorus removal: A possible insight[J]. Chem. Ecol., 2020,36(8):785-809. doi: 10.1080/02757540.2020.1777991

    6. [6]

      Borgstrom A, Hansson L A, Sjostedt J. Wetlands as a local scale management tool to reduce algal growth potential[J]. Wetlands, 2022,42(8)123. doi: 10.1007/s13157-022-01640-9

    7. [7]

      Cornel P, Schaum C. Phosphorus recovery from wastewater: Needs, technologies and costs[J]. Water Sci. Technol., 2009,59(6):1069-1076. doi: 10.2166/wst.2009.045

    8. [8]

      Sun Y, Feng X L, Zheng W S. Nanoscale lanthanum carbonate hybridized with polyacrylic resin for enhanced phosphate removal from secondary effluent[J]. J. Chem. Eng. Data, 2020,65(9):4512-4522. doi: 10.1021/acs.jced.0c00352

    9. [9]

      Wikstrom J, Bonaglia S, Ramo R, Renman G, Walve J, Hedberg J, Gunnarsson J S. Sediment remediation with new composite sorbent amendments to sequester phosphorus, organic contaminants, and metals[J]. Environ. Sci. Technol., 2021,55(17):11937-11947. doi: 10.1021/acs.est.1c02308

    10. [10]

      Wu B L, Lo I M C. Surface functional group engineering of CeO2 particles for enhanced phosphate adsorption[J]. Environ. Sci. Technol., 2020,54(7):4601-4608. doi: 10.1021/acs.est.9b06812

    11. [11]

      Lu J L, Jia P, Feng S W, Wang Y T, Zheng J, Ou S N, Wu Z H, Liao B, Shu W S, Liang J L, Li J T. Remarkable effects of microbial factors on soil phosphorus bioavailability: A country-scale study[J]. Global Change Biol., 2022,28(14):4459-4471. doi: 10.1111/gcb.16213

    12. [12]

      Kumar P S, Korving L, Keesman K J, van Loosdrecht M C M, Witkamp G J. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics[J]. Chem. Eng. J., 2019,358:160-169. doi: 10.1016/j.cej.2018.09.202

    13. [13]

      GAO F F, YANG Y Y, DU X, HAO X G, GUAN G Q, TANG B. Electrically switched ion membrane for ion selective separation and recovery: From ESIX to ESIPM[J]. Prog. Chem., 2020,32(9):1344-1351.

    14. [14]

      Zhang X F, Wang J, Zhang Z L, Du X, Gao F F, Hao X G, Abudula A, Guan G Q, Liu Z, Li J. Modelling of pseudocapacitive ion adsorption of electrochemically switched ion exchange based on electroactive site concentration[J]. Sep. Purif. Technol., 2022,286120451. doi: 10.1016/j.seppur.2022.120451

    15. [15]

      Liu C, Zhang M Y, Pan G, Lundehoj L, Nielsen U G, Shi Y, Hansen H C B. Phosphate capture by ultrathin MgAl layered double hydroxide nanoparticles[J]. Appl. Clay Sci., 2019,177:82-90. doi: 10.1016/j.clay.2019.04.019

    16. [16]

      Gao F F, Du X, Hao X G, Li S S, Zheng J L, Yang Y Y, Han N C, Guan G Q. A potential‑controlled ion pump based on a three‑ dimensional PPy@GO membrane for separating dilute lead ions from wastewater[J]. Electrochim. Acta, 2017,236:434-442. doi: 10.1016/j.electacta.2017.03.187

    17. [17]

      Hong S P, Yoon H, Lee J, Kim C, Kim S, Lee J, Lee C, Yoon J. Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization[J]. J. Colloid Interface Sci., 2020,564:1-7. doi: 10.1016/j.jcis.2019.12.068

    18. [18]

      Liu G G, Wang G R, Jin Z L. Graphdiyne-modified NiV-layered double hydroxide nanostructures for supercapacitor applications[J]. ACS Appl. Nano Mater., 2023,6(23):21803-21817. doi: 10.1021/acsanm.3c03993

    19. [19]

      Gu Y L, Yang Z Z, Zhou J W, Fang Q Z, Tan X F, Long Q B. Graphene/LDHs hybrid composites synthesis and application in environmental protection[J]. Sep. Purif. Technol., 2024,328125042. doi: 10.1016/j.seppur.2023.125042

    20. [20]

      LIU J X, LIU C X, CHEN L J, ZHANG X G. Preparation and property of zwitterionic surfactants intercalation into graphene oxide-layered double hydroxide hybrid[J]. Chinese J. Inorg. Chem., 2019,35(5):844-854.

    21. [21]

      Ding C X, Long X Y, Zeng G Y, Ouyang Y, Lei B W, Zeng R Y, Wang J, Zhou Z. Efficiency recycling and utilization of phosphate from wastewater using LDHs-modified biochar[J]. Int. J. Environ. Res. Public Health, 2023,20(4)3051. doi: 10.3390/ijerph20043051

    22. [22]

      Zhao W H, Liu T T, Wu N D, Zhou B Y, Yan Y X, Ye Y C, Gong J F, Yang S G. Bimetallic electron-induced phase transformation of CoNi LDH-GO for high oxygen evolution and supercapacitor performance[J]. Sci. China Mater., 2023,66(2):577-586. doi: 10.1007/s40843-022-2170-6

    23. [23]

      Zhu Y, An S, Sun X, Lan D, Cui J, Zhang Y, He W. Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance[J]. Chem. Eng. J., 2020,383123206. doi: 10.1016/j.cej.2019.123206

    24. [24]

      Liang H Y, Lin J H, Jia H N, Chen S L, Qi J L, Cao J, Lin T S, Fei W D, Feng J C. Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors[J]. J. Mater. Chem. A, 2018,6(31):15040-15046. doi: 10.1039/C8TA05065A

    25. [25]

      Wang J, Gao F F, Du X, Ma X L, Hao X G, Ma W B, Wang K Z, Guan G Q, Abudula A. A high-performance electroactive PPy/rGO/NiCo-LDH hybrid film for removal of dilute dodecyl sulfonate ions[J]. Electrochim. Acta, 2020,331135288. doi: 10.1016/j.electacta.2019.135288

    26. [26]

      Song F, Zhang R, Zhang X Y, Qin J Q, Liu R P. Ni-Co double hydroxide grown on graphene oxide for enhancing lithium ion storage[J]. Energy Fuels, 2020,34(10):13032-13037. doi: 10.1021/acs.energyfuels.0c01637

    27. [27]

      Ma P F, Zhu J W, Du X, Yang Y Y, Hao X Q, An X W, Hao X G, Prestigiacomo C. Specific separation and recovery of phosphate anions by a novel NiFe-LDH/rGO hybrid film based on electroactivity‑ variable valence[J]. J. Colloid Interface Sci., 2022,626:47-58. doi: 10.1016/j.jcis.2022.06.024

    28. [28]

      WANG X L, ZHANG D, SHI X M, QIAO X Y, CHENG Y, ZHAO H N, CHANG L M, YU Z Q, HUANG C H, YANG S B. Preparation by Co metal-organic framework template and capacitive properties of NiCo-layered double hydroxide/nickel foam composites[J]. Chinese J. Inorg. Chem., 2023,39(4):607-616.

    29. [29]

      Youmbi B S, Pelisson C H, Denicourt-Nowicki A, Roucoux A, Greneche J M. Impact of the charge transfer process on the Fe2+/Fe3+ distribution at Fe3O4 magnetic surface induced by deposited Pd clusters[J]. Surf. Sci., 2021,712121879. doi: 10.1016/j.susc.2021.121879

    30. [30]

      YANG Y Y, LI Y G, ZHU X W, DU X, MA X L, HAO X G. Potential induced reversible removal/recovery of phosphate anions with high selectivity using an electroactive NiCo-layered double oxide film[J]. J. Inorg. Mater., 2021,36(3):292-298.

    31. [31]

      Sun B, Hao X G, Wang Z D, Guan G Q, Zhang Z L, Li Y B, Liu S B. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis[J]. J. Hazard. Mater., 2012,233:177-183.

    32. [32]

      Cai J G, Zhang Y Y, Pan B C, Zhang W M, Lv L, Zhang Q X. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger[J]. Water Res., 2016,102:109-116. doi: 10.1016/j.watres.2016.06.030

    33. [33]

      Yang Y Y, Du X, Abudula A, Zhang Z L, Ma X L, Tang K Y, Hao X G, Guan G Q. Highly efficient defluoridation using a porous MWCNT@NiMn-LDH composites based on ion transport of EDL coupled with ligand exchange mechanism[J]. Sep. Purif. Technol., 2019,223:154-161. doi: 10.1016/j.seppur.2019.04.052

  • 加载中
    1. [1]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    7. [7]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    9. [9]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    10. [10]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    11. [11]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    12. [12]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    15. [15]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

Metrics
  • PDF Downloads(3)
  • Abstract views(919)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return