Citation: Zhengzheng LIU, Pengyun ZHANG, Chengri WANG, Shengli HUANG, Guoyu YANG. Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039 shu

Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate

Figures(8)

  • A new sandwich-type {Co6}-added polyoxotungstate, [Co(dien)2]{[Co(dien)(H2O)]2[Co(dien)]2[Co6(en)2(μ3-OH)2(H2O)6(GeW8O31)2]}·5.5H2O (1), where dien=diethylenetriamine and en=ethylenediamine, was synthesized via hydrothermal reaction. The polyoxoanion of compound 1 was constructed by a belt-like {Co6} cluster core sandwiched by two {GeW8} units. 1 was characterized by single crystal X-ray diffraction, element analysis, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA) experiments, respectively. The electrochemical properties of 1 were explored by the cyclic voltammetry (CV) technique, and 1 exhibited excellent electrocatalytic activity in nitrite reduction.
  • 加载中
    1. [1]

      Miras H N, Yan J, Long D, Cronin L. Engineering polyoxometalates with emergent properties[J]. Chem. Soc. Rev., 2012,41:7403-7430. doi: 10.1039/c2cs35190k

    2. [2]

      Liu J X, Zhang X B, Li Y L, Huang S L, Yang G Y. Polyoxometalate functionalized architectures[J]. Coord. Chem. Rev., 2020,414:213-260.

    3. [3]

      Zhang Q, Li F Y, Xu L. Application of polyoxometalates (POMs) in the third generation of solar cells[J]. Polyoxometalates, 2023,29140018. doi: 10.26599/POM.2022.9140018

    4. [4]

      Zheng S T, Yang G Y. Recent advances in paramagnetic-TM-substituted polyoxometalates[J]. Chem. Soc. Rev., 2012,41:7623-7646. doi: 10.1039/c2cs35133a

    5. [5]

      Wang S S, Yang G Y. Recent advances in polyoxometalate-catalyzed reactions[J]. Chem. Rev., 2015,115:4893-4962. doi: 10.1021/cr500390v

    6. [6]

      YANG Guoyu. OXO cluster chemistry. Beijing: Science Press, 2012: 224-261

    7. [7]

      CHEN Weilin, WANG Enbo. Polyoxometalate chemistry. Beijing: Science Press, 2013: 45-84

    8. [8]

      Li H L, Lian C, Yang G Y. A Zr-added Dawson-type poly(polyoxometalate)[J]. Dalton Trans., 2023,52:857-861. doi: 10.1039/D2DT03820J

    9. [9]

      Weakley T J R, Evans H T, Showell J S. 18-Tungstotetracobalto(Ⅱ) diphosphate and related anions: A novel structural class of heteropolyanions[J]. J. Chem. Soc. Chem. Commun., 1973:139-140.

    10. [10]

      Francis B, Leyrie M, Herve G. Structure of potassium diaquatricuprooctadecatungstodiarsenate􀃮(12-) undecahydrate[J]. Acta Crystallogr. Sect. B, 1982,B38:358-362.

    11. [11]

      Limanski E M, Drewes D, Droste E, Bohner R, Kerbs B. Syntheses and X-ray characterization of novel tellurium-substituted lacunary polyoxotungstates containing V, Co, Ni and Zn as heteroatoms[J]. J. Mol. Struct., 2003,656:17-25. doi: 10.1016/S0022-2860(03)00340-5

    12. [12]

      Knoth W H, Domaille P J, Farlee R D. Anions of the type (RMOH2)3 W18P2O689- and[H2OCo]3W18P2O6812-. A reinvestigation of "B, β-W9PO349-"[J]. Organometallics, 1985,4:62-68. doi: 10.1021/om00120a012

    13. [13]

      Zhao J W, Li B, Zheng S T, Yang G Y. Two-dimensional extended (4, 4)-topological network constructed from tetra-Ni-substituted sandwich-type Keggin polyoxometalate building blocks and Ni-organic cation bridges[J]. Cryst. Growth Des., 2007,7:3130-3133.

    14. [14]

      Kikukawa Y, Suzuki K, Yamaguchi K, Mizuno N. Synthesis, structure characterization, and reversible transformation of a cobalt salt of a dilacunary γ-Keggin silicotungstate and sandwich-type di- and tetracobalt-containing silicotungstate dimers[J]. Inorg. Chem., 2013,52:8644-8652. doi: 10.1021/ic4008075

    15. [15]

      Xue H, Zhang Z, Yang B F, Liu H S, Yang G Y. Hydrothermal syntheses and structures of two tetra-Co substituted sandwiched polyoxometalates[J]. J. Clust. Sci., 2016,27:1439-1449. doi: 10.1007/s10876-016-1010-2

    16. [16]

      Guo L Y, Zeng S Y, Jaglicic Z, Hu Q D, Wang S X, Wang Z, Sun D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate[J]. Inorg. Chem., 2016,55:9006-9011. doi: 10.1021/acs.inorgchem.6b01468

    17. [17]

      Chen W C, Wang X L, Qin C, Shao K Z, Su Z M, Wang E B. A carbon-free polyoxometalate molecular catalyst with a cobalt-arsenic core for visible light-driven water oxidation[J]. Chem. Commun., 2016,52:9514-9517. doi: 10.1039/C6CC03763A

    18. [18]

      Zhang Z, Sun K N, Yang G Y. Two series of Cu-substituted sandwich-type polyoxotungstates constructed from trivacant germanotungstate fragments[J]. ChemistrySelect, 2019,4:7559-7565. doi: 10.1002/slct.201901273

    19. [19]

      Ginsberg P. Inorganic Syntheses. New York: Wiley, 1990.

    20. [20]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    21. [21]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    22. [22]

      Rees B, Jenner L, Yusupov M. Bulk-solvent correction in large macromolecular structures[J]. Acta Crystallogr. Sect. D, 2005,D61:1299-1301.

    23. [23]

      Mikysek T, Švancara I, Kalcher K, Bartoš M, Vytřas K, Ludvík J. New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes[J]. Anal. Chem., 2009,81:6327-6333. doi: 10.1021/ac9004937

    24. [24]

      Zhang Z M, Qin Y F, Qin C, Li Y G, Wang E B, Wang X L, Su Z M, Xu L. Two multi-copper-containing heteropolyoxotungstates constructed from the lacunary Keggin polyoxoanion and the high-nuclear spin cluster[J]. Inorg. Chem., 2007,46:8162-8169. doi: 10.1021/ic7012864

    25. [25]

      Ibrahim M, Xiang Y X, Bassil B S, Lan Y H, Powell A K, De Oliveira P, Keita B, Kortz U. Synthesis, magnetism, and electrochemistry of the Ni14- and Ni5-containing heteropolytungstates[Ni14(OH)6(H2O)10(HPO4)4(P2W15O56)4]34- and[Ni5(OH)4(H2O)4(β-GeW9O34)(β-GeW8O30(OH))]13-[J]. Inorg. Chem., 2013,52:8399-8408. doi: 10.1021/ic400943j

    26. [26]

      Nsouli N H, Ismail A H, Helgadottir I S, Dickman M H, Clement-Juan J M, Kortz U. Copper-, cobalt-, and manganese-containing 17-tungsto-2-germanates[J]. Inorg. Chem., 2009,48:5884-5890. doi: 10.1021/ic900180x

    27. [27]

      Wang C M, Zheng S T, Yang G Y. Novel copper-complex-substituted tungstogermanates[J]. Inorg. Chem., 2007,46:616-618. doi: 10.1021/ic0618605

    28. [28]

      Huang L, Wang S S, Zhao J W, Cheng L, Yang G Y. Synergistic combination of multi-Zr cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate[J]. J. Am. Chem. Soc., 2014,136:7637-7642. doi: 10.1021/ja413134w

    29. [29]

      Sun J J, Wang Y L, Yang G Y. Two new hexa-Ni-substituted polyoxometalates in the form of an isolated cluster and 1-D chain: Syntheses, structures, and properties[J]. CrystEngComm, 2020,22:8387-8393. doi: 10.1039/D0CE01446J

    30. [30]

      Zhao J W, Zheng S T, Li Z H, Yang G Y. Combination of lacunary polyoxometalates and high-nuclear transition-metal clusters under hydrothermal conditions: First 65·8 CdSO4-type 3-D framework built by hexa-Cu sandwiched polyoxotungstates[J]. Dalton Trans., 2009:1300-1306.

    31. [31]

      Zhang L Z, Gu W, Liu X, Dong Z L, Yang Y S, Li B, Liao D Z. K10[Co4(H2O)2(B-α-SiW9O34H)2]·21H2O: A sandwich polyoxometalate based on the magnetically interesting element cobalt[J]. Inorg. Chem. Commun., 2007,10:1378-1380. doi: 10.1016/j.inoche.2007.08.025

    32. [32]

      Brown I D, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallogr. Sect. B, 1985,B41:244-247.

    33. [33]

      Wang J P, Ma P T, Shen Y, Niu J Y. Tetra-transition-metal substituted Weakley-type sandwich germanotungstates and their derivatives decorated by transition-metal complexes[J]. Cryst. Growth Des., 2008,8:3130-3133. doi: 10.1021/cg701278b

    34. [34]

      Zhang Z M, Wang E B, Qi Y F, Li Y G, Mao B D, Su Z M. Synthesis, characterization, and crystal structures of double-cubane-substituted and asymmetric penta-Ni-substituted dimeric polyoxometalates[J]. Cryst. Growth Des., 2007,7:1305-1311. doi: 10.1021/cg060868m

    35. [35]

      Wuhai University. Chemical analysis: Vol. Ⅱ. 6th ed. Beijing: Higher Education Press, 2018: 240-249

    36. [36]

      Sun J J, Wang W D, Li X Y, Yang B F, Yang G Y. {Cu8} cluster-sandwiched polyoxotungstates and their polymers: Syntheses, structures, and properties[J]. Inorg. Chem., 2021,60:10459-10647.

    37. [37]

      Zhang Z, Sun K N, Yang G Y. Two series of Cu-substituted sandwich-type polyoxotungstates constructed from trivacant germanotungstate fragments[J]. ChemistrySelect, 2019,4:7559-7565.

    38. [38]

      Ibrahim M, Haider A, Xiang Y X, Bassil B S, Carey A M, Rullik L, Jameson G B, Doungmene F, Mbomekallé I M, De Oliveira P, Mereacre V, Kostakis G E, Powell A K, Kortz U. Tetradecanuclear iron􀃮-oxo nanoclusters stabilized by trilacunary heteropolyanions[J]. Inorg. Chem., 2015,54:6136-6146.

    39. [39]

      Yang Z X, Liang X W, Lin D M, Zheng Q J, Huo Y. Heteroatom-modulated assembly of hexalanthanoid-containing polyoxometalate-based coordination networks[J]. Inorg. Chem., 2023,62:1466-1475.

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    3. [3]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    4. [4]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    7. [7]

      Qiyan WuQing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    10. [10]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    11. [11]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    12. [12]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    13. [13]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    14. [14]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    15. [15]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    16. [16]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    17. [17]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    18. [18]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    19. [19]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    20. [20]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

Metrics
  • PDF Downloads(1)
  • Abstract views(146)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return