Citation: Zhengzheng LIU, Pengyun ZHANG, Chengri WANG, Shengli HUANG, Guoyu YANG. Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039 shu

Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate

Figures(8)

  • A new sandwich-type {Co6}-added polyoxotungstate, [Co(dien)2]{[Co(dien)(H2O)]2[Co(dien)]2[Co6(en)2(μ3-OH)2(H2O)6(GeW8O31)2]}·5.5H2O (1), where dien=diethylenetriamine and en=ethylenediamine, was synthesized via hydrothermal reaction. The polyoxoanion of compound 1 was constructed by a belt-like {Co6} cluster core sandwiched by two {GeW8} units. 1 was characterized by single crystal X-ray diffraction, element analysis, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA) experiments, respectively. The electrochemical properties of 1 were explored by the cyclic voltammetry (CV) technique, and 1 exhibited excellent electrocatalytic activity in nitrite reduction.
  • 加载中
    1. [1]

      Miras H N, Yan J, Long D, Cronin L. Engineering polyoxometalates with emergent properties[J]. Chem. Soc. Rev., 2012,41:7403-7430. doi: 10.1039/c2cs35190k

    2. [2]

      Liu J X, Zhang X B, Li Y L, Huang S L, Yang G Y. Polyoxometalate functionalized architectures[J]. Coord. Chem. Rev., 2020,414:213-260.

    3. [3]

      Zhang Q, Li F Y, Xu L. Application of polyoxometalates (POMs) in the third generation of solar cells[J]. Polyoxometalates, 2023,29140018. doi: 10.26599/POM.2022.9140018

    4. [4]

      Zheng S T, Yang G Y. Recent advances in paramagnetic-TM-substituted polyoxometalates[J]. Chem. Soc. Rev., 2012,41:7623-7646. doi: 10.1039/c2cs35133a

    5. [5]

      Wang S S, Yang G Y. Recent advances in polyoxometalate-catalyzed reactions[J]. Chem. Rev., 2015,115:4893-4962. doi: 10.1021/cr500390v

    6. [6]

      YANG Guoyu. OXO cluster chemistry. Beijing: Science Press, 2012: 224-261

    7. [7]

      CHEN Weilin, WANG Enbo. Polyoxometalate chemistry. Beijing: Science Press, 2013: 45-84

    8. [8]

      Li H L, Lian C, Yang G Y. A Zr-added Dawson-type poly(polyoxometalate)[J]. Dalton Trans., 2023,52:857-861. doi: 10.1039/D2DT03820J

    9. [9]

      Weakley T J R, Evans H T, Showell J S. 18-Tungstotetracobalto(Ⅱ) diphosphate and related anions: A novel structural class of heteropolyanions[J]. J. Chem. Soc. Chem. Commun., 1973:139-140.

    10. [10]

      Francis B, Leyrie M, Herve G. Structure of potassium diaquatricuprooctadecatungstodiarsenate􀃮(12-) undecahydrate[J]. Acta Crystallogr. Sect. B, 1982,B38:358-362.

    11. [11]

      Limanski E M, Drewes D, Droste E, Bohner R, Kerbs B. Syntheses and X-ray characterization of novel tellurium-substituted lacunary polyoxotungstates containing V, Co, Ni and Zn as heteroatoms[J]. J. Mol. Struct., 2003,656:17-25. doi: 10.1016/S0022-2860(03)00340-5

    12. [12]

      Knoth W H, Domaille P J, Farlee R D. Anions of the type (RMOH2)3 W18P2O689- and[H2OCo]3W18P2O6812-. A reinvestigation of "B, β-W9PO349-"[J]. Organometallics, 1985,4:62-68. doi: 10.1021/om00120a012

    13. [13]

      Zhao J W, Li B, Zheng S T, Yang G Y. Two-dimensional extended (4, 4)-topological network constructed from tetra-Ni-substituted sandwich-type Keggin polyoxometalate building blocks and Ni-organic cation bridges[J]. Cryst. Growth Des., 2007,7:3130-3133.

    14. [14]

      Kikukawa Y, Suzuki K, Yamaguchi K, Mizuno N. Synthesis, structure characterization, and reversible transformation of a cobalt salt of a dilacunary γ-Keggin silicotungstate and sandwich-type di- and tetracobalt-containing silicotungstate dimers[J]. Inorg. Chem., 2013,52:8644-8652. doi: 10.1021/ic4008075

    15. [15]

      Xue H, Zhang Z, Yang B F, Liu H S, Yang G Y. Hydrothermal syntheses and structures of two tetra-Co substituted sandwiched polyoxometalates[J]. J. Clust. Sci., 2016,27:1439-1449. doi: 10.1007/s10876-016-1010-2

    16. [16]

      Guo L Y, Zeng S Y, Jaglicic Z, Hu Q D, Wang S X, Wang Z, Sun D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate[J]. Inorg. Chem., 2016,55:9006-9011. doi: 10.1021/acs.inorgchem.6b01468

    17. [17]

      Chen W C, Wang X L, Qin C, Shao K Z, Su Z M, Wang E B. A carbon-free polyoxometalate molecular catalyst with a cobalt-arsenic core for visible light-driven water oxidation[J]. Chem. Commun., 2016,52:9514-9517. doi: 10.1039/C6CC03763A

    18. [18]

      Zhang Z, Sun K N, Yang G Y. Two series of Cu-substituted sandwich-type polyoxotungstates constructed from trivacant germanotungstate fragments[J]. ChemistrySelect, 2019,4:7559-7565. doi: 10.1002/slct.201901273

    19. [19]

      Ginsberg P. Inorganic Syntheses. New York: Wiley, 1990.

    20. [20]

      Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    21. [21]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    22. [22]

      Rees B, Jenner L, Yusupov M. Bulk-solvent correction in large macromolecular structures[J]. Acta Crystallogr. Sect. D, 2005,D61:1299-1301.

    23. [23]

      Mikysek T, Švancara I, Kalcher K, Bartoš M, Vytřas K, Ludvík J. New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes[J]. Anal. Chem., 2009,81:6327-6333. doi: 10.1021/ac9004937

    24. [24]

      Zhang Z M, Qin Y F, Qin C, Li Y G, Wang E B, Wang X L, Su Z M, Xu L. Two multi-copper-containing heteropolyoxotungstates constructed from the lacunary Keggin polyoxoanion and the high-nuclear spin cluster[J]. Inorg. Chem., 2007,46:8162-8169. doi: 10.1021/ic7012864

    25. [25]

      Ibrahim M, Xiang Y X, Bassil B S, Lan Y H, Powell A K, De Oliveira P, Keita B, Kortz U. Synthesis, magnetism, and electrochemistry of the Ni14- and Ni5-containing heteropolytungstates[Ni14(OH)6(H2O)10(HPO4)4(P2W15O56)4]34- and[Ni5(OH)4(H2O)4(β-GeW9O34)(β-GeW8O30(OH))]13-[J]. Inorg. Chem., 2013,52:8399-8408. doi: 10.1021/ic400943j

    26. [26]

      Nsouli N H, Ismail A H, Helgadottir I S, Dickman M H, Clement-Juan J M, Kortz U. Copper-, cobalt-, and manganese-containing 17-tungsto-2-germanates[J]. Inorg. Chem., 2009,48:5884-5890. doi: 10.1021/ic900180x

    27. [27]

      Wang C M, Zheng S T, Yang G Y. Novel copper-complex-substituted tungstogermanates[J]. Inorg. Chem., 2007,46:616-618. doi: 10.1021/ic0618605

    28. [28]

      Huang L, Wang S S, Zhao J W, Cheng L, Yang G Y. Synergistic combination of multi-Zr cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate[J]. J. Am. Chem. Soc., 2014,136:7637-7642. doi: 10.1021/ja413134w

    29. [29]

      Sun J J, Wang Y L, Yang G Y. Two new hexa-Ni-substituted polyoxometalates in the form of an isolated cluster and 1-D chain: Syntheses, structures, and properties[J]. CrystEngComm, 2020,22:8387-8393. doi: 10.1039/D0CE01446J

    30. [30]

      Zhao J W, Zheng S T, Li Z H, Yang G Y. Combination of lacunary polyoxometalates and high-nuclear transition-metal clusters under hydrothermal conditions: First 65·8 CdSO4-type 3-D framework built by hexa-Cu sandwiched polyoxotungstates[J]. Dalton Trans., 2009:1300-1306.

    31. [31]

      Zhang L Z, Gu W, Liu X, Dong Z L, Yang Y S, Li B, Liao D Z. K10[Co4(H2O)2(B-α-SiW9O34H)2]·21H2O: A sandwich polyoxometalate based on the magnetically interesting element cobalt[J]. Inorg. Chem. Commun., 2007,10:1378-1380. doi: 10.1016/j.inoche.2007.08.025

    32. [32]

      Brown I D, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallogr. Sect. B, 1985,B41:244-247.

    33. [33]

      Wang J P, Ma P T, Shen Y, Niu J Y. Tetra-transition-metal substituted Weakley-type sandwich germanotungstates and their derivatives decorated by transition-metal complexes[J]. Cryst. Growth Des., 2008,8:3130-3133. doi: 10.1021/cg701278b

    34. [34]

      Zhang Z M, Wang E B, Qi Y F, Li Y G, Mao B D, Su Z M. Synthesis, characterization, and crystal structures of double-cubane-substituted and asymmetric penta-Ni-substituted dimeric polyoxometalates[J]. Cryst. Growth Des., 2007,7:1305-1311. doi: 10.1021/cg060868m

    35. [35]

      Wuhai University. Chemical analysis: Vol. Ⅱ. 6th ed. Beijing: Higher Education Press, 2018: 240-249

    36. [36]

      Sun J J, Wang W D, Li X Y, Yang B F, Yang G Y. {Cu8} cluster-sandwiched polyoxotungstates and their polymers: Syntheses, structures, and properties[J]. Inorg. Chem., 2021,60:10459-10647.

    37. [37]

      Zhang Z, Sun K N, Yang G Y. Two series of Cu-substituted sandwich-type polyoxotungstates constructed from trivacant germanotungstate fragments[J]. ChemistrySelect, 2019,4:7559-7565.

    38. [38]

      Ibrahim M, Haider A, Xiang Y X, Bassil B S, Carey A M, Rullik L, Jameson G B, Doungmene F, Mbomekallé I M, De Oliveira P, Mereacre V, Kostakis G E, Powell A K, Kortz U. Tetradecanuclear iron􀃮-oxo nanoclusters stabilized by trilacunary heteropolyanions[J]. Inorg. Chem., 2015,54:6136-6146.

    39. [39]

      Yang Z X, Liang X W, Lin D M, Zheng Q J, Huo Y. Heteroatom-modulated assembly of hexalanthanoid-containing polyoxometalate-based coordination networks[J]. Inorg. Chem., 2023,62:1466-1475.

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    3. [3]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    4. [4]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    5. [5]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    6. [6]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    7. [7]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    8. [8]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    11. [11]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    12. [12]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    13. [13]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    14. [14]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    15. [15]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    16. [16]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    17. [17]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    18. [18]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    19. [19]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    20. [20]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

Metrics
  • PDF Downloads(0)
  • Abstract views(52)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return