Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate
- Corresponding author: Shengli HUANG, huangsl@bit.edu.cn Guoyu YANG, ygy@bit.edu.cn
Citation: Zhengzheng LIU, Pengyun ZHANG, Chengri WANG, Shengli HUANG, Guoyu YANG. Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Miras H N, Yan J, Long D, Cronin L. Engineering polyoxometalates with emergent properties[J]. Chem. Soc. Rev., 2012,41:7403-7430. doi: 10.1039/c2cs35190k
Liu J X, Zhang X B, Li Y L, Huang S L, Yang G Y. Polyoxometalate functionalized architectures[J]. Coord. Chem. Rev., 2020,414:213-260.
Zhang Q, Li F Y, Xu L. Application of polyoxometalates (POMs) in the third generation of solar cells[J]. Polyoxometalates, 2023,29140018. doi: 10.26599/POM.2022.9140018
Zheng S T, Yang G Y. Recent advances in paramagnetic-TM-substituted polyoxometalates[J]. Chem. Soc. Rev., 2012,41:7623-7646. doi: 10.1039/c2cs35133a
Wang S S, Yang G Y. Recent advances in polyoxometalate-catalyzed reactions[J]. Chem. Rev., 2015,115:4893-4962. doi: 10.1021/cr500390v
YANG Guoyu. OXO cluster chemistry. Beijing: Science Press, 2012: 224-261
CHEN Weilin, WANG Enbo. Polyoxometalate chemistry. Beijing: Science Press, 2013: 45-84
Li H L, Lian C, Yang G Y. A Zr-added Dawson-type poly(polyoxometalate)[J]. Dalton Trans., 2023,52:857-861. doi: 10.1039/D2DT03820J
Weakley T J R, Evans H T, Showell J S. 18-Tungstotetracobalto(Ⅱ) diphosphate and related anions: A novel structural class of heteropolyanions[J]. J. Chem. Soc. Chem. Commun., 1973:139-140.
Francis B, Leyrie M, Herve G. Structure of potassium diaquatricuprooctadecatungstodiarsenate(12-) undecahydrate[J]. Acta Crystallogr. Sect. B, 1982,B38:358-362.
Limanski E M, Drewes D, Droste E, Bohner R, Kerbs B. Syntheses and X-ray characterization of novel tellurium-substituted lacunary polyoxotungstates containing VⅣ, CoⅡ, NiⅡ and ZnⅡ as heteroatoms[J]. J. Mol. Struct., 2003,656:17-25. doi: 10.1016/S0022-2860(03)00340-5
Knoth W H, Domaille P J, Farlee R D. Anions of the type (RMOH2)3 W18P2O689- and[H2OCo]3W18P2O6812-. A reinvestigation of "B, β-W9PO349-"[J]. Organometallics, 1985,4:62-68. doi: 10.1021/om00120a012
Zhao J W, Li B, Zheng S T, Yang G Y. Two-dimensional extended (4, 4)-topological network constructed from tetra-NiⅡ-substituted sandwich-type Keggin polyoxometalate building blocks and NiⅡ-organic cation bridges[J]. Cryst. Growth Des., 2007,7:3130-3133.
Kikukawa Y, Suzuki K, Yamaguchi K, Mizuno N. Synthesis, structure characterization, and reversible transformation of a cobalt salt of a dilacunary γ-Keggin silicotungstate and sandwich-type di- and tetracobalt-containing silicotungstate dimers[J]. Inorg. Chem., 2013,52:8644-8652. doi: 10.1021/ic4008075
Xue H, Zhang Z, Yang B F, Liu H S, Yang G Y. Hydrothermal syntheses and structures of two tetra-CoⅡ substituted sandwiched polyoxometalates[J]. J. Clust. Sci., 2016,27:1439-1449. doi: 10.1007/s10876-016-1010-2
Guo L Y, Zeng S Y, Jaglicic Z, Hu Q D, Wang S X, Wang Z, Sun D. A pyridazine-bridged sandwiched cluster incorporating planar hexanuclear cobalt ring and bivacant phosphotungstate[J]. Inorg. Chem., 2016,55:9006-9011. doi: 10.1021/acs.inorgchem.6b01468
Chen W C, Wang X L, Qin C, Shao K Z, Su Z M, Wang E B. A carbon-free polyoxometalate molecular catalyst with a cobalt-arsenic core for visible light-driven water oxidation[J]. Chem. Commun., 2016,52:9514-9517. doi: 10.1039/C6CC03763A
Zhang Z, Sun K N, Yang G Y. Two series of CuⅡ-substituted sandwich-type polyoxotungstates constructed from trivacant germanotungstate fragments[J]. ChemistrySelect, 2019,4:7559-7565. doi: 10.1002/slct.201901273
Ginsberg P. Inorganic Syntheses. New York: Wiley, 1990.
Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.
Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726
Rees B, Jenner L, Yusupov M. Bulk-solvent correction in large macromolecular structures[J]. Acta Crystallogr. Sect. D, 2005,D61:1299-1301.
Mikysek T, Švancara I, Kalcher K, Bartoš M, Vytřas K, Ludvík J. New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes[J]. Anal. Chem., 2009,81:6327-6333. doi: 10.1021/ac9004937
Zhang Z M, Qin Y F, Qin C, Li Y G, Wang E B, Wang X L, Su Z M, Xu L. Two multi-copper-containing heteropolyoxotungstates constructed from the lacunary Keggin polyoxoanion and the high-nuclear spin cluster[J]. Inorg. Chem., 2007,46:8162-8169. doi: 10.1021/ic7012864
Ibrahim M, Xiang Y X, Bassil B S, Lan Y H, Powell A K, De Oliveira P, Keita B, Kortz U. Synthesis, magnetism, and electrochemistry of the Ni14- and Ni5-containing heteropolytungstates[Ni14(OH)6(H2O)10(HPO4)4(P2W15O56)4]34- and[Ni5(OH)4(H2O)4(β-GeW9O34)(β-GeW8O30(OH))]13-[J]. Inorg. Chem., 2013,52:8399-8408. doi: 10.1021/ic400943j
Nsouli N H, Ismail A H, Helgadottir I S, Dickman M H, Clement-Juan J M, Kortz U. Copper-, cobalt-, and manganese-containing 17-tungsto-2-germanates[J]. Inorg. Chem., 2009,48:5884-5890. doi: 10.1021/ic900180x
Wang C M, Zheng S T, Yang G Y. Novel copper-complex-substituted tungstogermanates[J]. Inorg. Chem., 2007,46:616-618. doi: 10.1021/ic0618605
Huang L, Wang S S, Zhao J W, Cheng L, Yang G Y. Synergistic combination of multi-ZrⅣ cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate[J]. J. Am. Chem. Soc., 2014,136:7637-7642. doi: 10.1021/ja413134w
Sun J J, Wang Y L, Yang G Y. Two new hexa-Ni-substituted polyoxometalates in the form of an isolated cluster and 1-D chain: Syntheses, structures, and properties[J]. CrystEngComm, 2020,22:8387-8393. doi: 10.1039/D0CE01446J
Zhao J W, Zheng S T, Li Z H, Yang G Y. Combination of lacunary polyoxometalates and high-nuclear transition-metal clusters under hydrothermal conditions: First 65·8 CdSO4-type 3-D framework built by hexa-CuⅡ sandwiched polyoxotungstates[J]. Dalton Trans., 2009:1300-1306.
Zhang L Z, Gu W, Liu X, Dong Z L, Yang Y S, Li B, Liao D Z. K10[Co4(H2O)2(B-α-SiW9O34H)2]·21H2O: A sandwich polyoxometalate based on the magnetically interesting element cobalt[J]. Inorg. Chem. Commun., 2007,10:1378-1380. doi: 10.1016/j.inoche.2007.08.025
Brown I D, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database[J]. Acta Crystallogr. Sect. B, 1985,B41:244-247.
Wang J P, Ma P T, Shen Y, Niu J Y. Tetra-transition-metal substituted Weakley-type sandwich germanotungstates and their derivatives decorated by transition-metal complexes[J]. Cryst. Growth Des., 2008,8:3130-3133. doi: 10.1021/cg701278b
Zhang Z M, Wang E B, Qi Y F, Li Y G, Mao B D, Su Z M. Synthesis, characterization, and crystal structures of double-cubane-substituted and asymmetric penta-Ni-substituted dimeric polyoxometalates[J]. Cryst. Growth Des., 2007,7:1305-1311. doi: 10.1021/cg060868m
Wuhai University. Chemical analysis: Vol. Ⅱ. 6th ed. Beijing: Higher Education Press, 2018: 240-249
Sun J J, Wang W D, Li X Y, Yang B F, Yang G Y. {Cu8} cluster-sandwiched polyoxotungstates and their polymers: Syntheses, structures, and properties[J]. Inorg. Chem., 2021,60:10459-10647.
Zhang Z, Sun K N, Yang G Y. Two series of CuⅡ-substituted sandwich-type polyoxotungstates constructed from trivacant germanotungstate fragments[J]. ChemistrySelect, 2019,4:7559-7565.
Ibrahim M, Haider A, Xiang Y X, Bassil B S, Carey A M, Rullik L, Jameson G B, Doungmene F, Mbomekallé I M, De Oliveira P, Mereacre V, Kostakis G E, Powell A K, Kortz U. Tetradecanuclear iron-oxo nanoclusters stabilized by trilacunary heteropolyanions[J]. Inorg. Chem., 2015,54:6136-6146.
Yang Z X, Liang X W, Lin D M, Zheng Q J, Huo Y. Heteroatom-modulated assembly of hexalanthanoid-containing polyoxometalate-based coordination networks[J]. Inorg. Chem., 2023,62:1466-1475.
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Jingping Hu , Jing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14–epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
H atoms are omitted for clarity; Symmetry code: A: 1-x, 1-y, 1-z.
H atoms are omitted for clarity.
Inset: the fitted curve of peak currents with the square root of the scan rate; The peak currents were extracted from cathodic peak Ⅲ.
Scan rate: 100 mV•s-1.
The data were calculated from the cathodic currents at-0.9 V (vs Ag/AgCl).