Citation: Kun WANG, Wenrui LIU, Peng JIANG, Yuhang SONG, Lihua CHEN, Zhao DENG. Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037 shu

Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction

  • Corresponding author: Zhao DENG, dengzhao@whut.edu.cn
  • Received Date: 25 January 2024
    Revised Date: 28 May 2024

Figures(9)

  • BiOBr-Pt catalysts with hierarchical hollow structures were synthesized by a one-step solvothermal method using ethylene glycol as solvent and polyvinylpyrrolidone as surfactant. The synthesized hierarchical hollow structure BiOBr-2h catalyst had a specific surface area of 28 m2·g-1, twice as large as the comparison sample BiOBr-1h. This structure provides more reactive sites for the catalytic reaction. Meanwhile, introducing Pt into the catalyst can enhance the carrier conduction rate of BiOBr. Moreover, it can act as an electron trap to capture many surrounding electrons and inhibit the complexation of photogenerated carriers, thus improving the catalytic activity of CO2 reduction. The main product of BiOBr-Pt was CO with 99% product selectivity and its CO yield was 20.8 μmol·h-1· g-1. Its performance was 2.1 times that of primitive BiOBr. This Pt loading with a hierarchical hollow structure can effectively convert CO2.
  • 加载中
    1. [1]

      Wang H J, Wang Y J, Guo L J, Zhang X H, Ribeiro C, He T. Solarheating boosted catalytic reduction of CO2 under full-solar spectrum[J]. Chinese J. Catal., 2020,41(1):131-139. doi: 10.1016/S1872-2067(19)63393-0

    2. [2]

      Bie C B, Yu H G, Cheng B, Ho W K, Fan J J, Yu J G. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Adv. Mater., 2021,33(9)2003521. doi: 10.1002/adma.202003521

    3. [3]

      Das S, Pérez-Ramírez J, Gong J L, Dewangan N, Hidajat K, Gates B C, Kawi S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J]. Chem. Soc. Rev., 2020,49(10):2937-3004. doi: 10.1039/C9CS00713J

    4. [4]

      Jin X L, Lv C D, Zhou X, Xie H Q, Sun S F, Liu Y, Meng Q Q, Chen G. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity[J]. Nano Energy, 2019,64103955. doi: 10.1016/j.nanoen.2019.103955

    5. [5]

      Li Q, Tang Q J, Xiong P Y, Chen D Z, Chen J M, Wu Z B, Wang H Q. Effect of palladium chemical states on CO2 photocatalytic reduction over g-C3N4: Distinct role of single-atomic state in boosting CH4 production[J]. Chinese J. Catal., 2023,46:177-190. doi: 10.1016/S1872-2067(22)64199-8

    6. [6]

      Zhou Y S, Wang Z T, Huang L, Zaman S, Lei K, Yue T, Li Z A, You B, Xia B Y. Engineering 2D photocatalysts toward carbon dioxide reduction[J]. Adv. Energy Mater., 2021,11(8)2003159. doi: 10.1002/aenm.202003159

    7. [7]

      Bai Y, Yang P, Wang L, Yang B, Xie H Q, Zhou Y, Ye L Q. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO[J]. Chem. Eng. J., 2019,360:473-482. doi: 10.1016/j.cej.2018.12.008

    8. [8]

      Wang M Y, Quesada-Cabrera R, Sathasivam S, Blunt M O, Borowiec J, Carmalt C J. Visible-light-active iodide-doped BiOBr coatings for sustainable infrastructure[J]. ACS Appl. Mater. Interfaces, 2023,15(42):49270-49280. doi: 10.1021/acsami.3c11525

    9. [9]

      XU L M, HUANG H B, SHEN J H, YOU Q H. Synthesis of Zn-doped BiOBr with enhanced photoreduction CO2 activity under visible light irradiation[J]. Chinese J. Inorg. Chem., 2020,36(12):2395-2403. doi: 10.11862/CJIC.2020.262

    10. [10]

      Deng C H, Guan H M. Fabrication of hollow inorganic fullerene-like BiOBr eggshells with highly efficient visible light photocatalytic activity[J]. Mater. Lett., 2013,107:119-122. doi: 10.1016/j.matlet.2013.05.041

    11. [11]

      GUO Q, TANG G B, WANG H, SUN Q, GAO X Y. Tunable synthesis of BiOBr for efficient photocatalytic degradation of carbamazepine in wastewater[J]. Chem. J. Chinese Universities, 2019,40(10):2164-2169. doi: 10.7503/cjcu20190229

    12. [12]

      HU H M, WANG T, LING X H, PENG L L, WANG T, HE Y Y, SUN Y T, DENG C H. Preparation and photocatalytic CO2 reduction performance of BiOBr-OV/RGO composite[J]. Chinese J. Inorg. Chem., 2023,39(2):234-244. doi: 10.11862/CJIC.2022.290

    13. [13]

      Devarayapalli K C, Zeng J, Lee D S, Vattikuti S V P, Shim J. In-situ Pt nanoparticles decorated BiOBr heterostructure for enhanced visible light-based photocatalytic activity: Synergistic effect[J]. Chemosphere, 2022,298134125. doi: 10.1016/j.chemosphere.2022.134125

    14. [14]

      JI L, WANG H R, YU R M. Preparation, characterization and visiblelight photocatalytic activities of p-n heterojunction BiOBr/NaBiO3 composites[J]. Chem. J. Chinese Universities, 2014,35(10):2170-2176. doi: 10.7503/cjcu20140339

    15. [15]

      Zhao J L, Miao Z R, Zhang Y F, Wen G Y, Liu L H, Wang X X, Cao X Z, Wang B Y. Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photo-reduction activity[J]. J. Colloid Interface Sci., 2021,593:231-243. doi: 10.1016/j.jcis.2021.02.117

    16. [16]

      Han L P, Guo Y X, Lin Z, Huang H W. 0D to 3D controllable nanostructures of BiOBr via a facile and fast room-temperature strategy[J]. Colloid Surf. A-Physicochem. Eng., 2020,603(10)125233.

    17. [17]

      Jiang Q, Ji M X, Chen R, Zhang Y, Li K, Meng C X, Chen Z G, Li H M, Xia J X. Ionic liquid induced mechanochemical synthesis of BiOBr ultrathin nanosheets at ambient temperature with superior visible light driven photocatalysis[J]. J. Colloid Interface Sci., 2020,574:131-139. doi: 10.1016/j.jcis.2020.04.018

    18. [18]

      Chai B, Zhou H, Zhang F, Liao X, Ren M X. Visible light photocatalytic performance of hierarchical BiOBr microspheres synthesized via a reactable ionic liquid[J]. Mat. Sci. Semicon. Proc., 2014,23:151-158. doi: 10.1016/j.mssp.2014.02.021

    19. [19]

      Liu H, Li W, Shen D K, Zhao D Y, Wang G X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high performance lithium ion battery anodes[J]. J. Am. Chem. Soc., 2015,137(40):13161-13166. doi: 10.1021/jacs.5b08743

    20. [20]

      Lin X H, Wang S B, Tu W G, Wang H J, Hou Y D, Dai W X, Xu R. Magnetic hollow spheres assembled from graphene-encapsulated nickel nanoparticles for efficient photocatalytic CO2 reduction[J]. ACS Appl. Energy Mater., 2019,2(10):7670-7678. doi: 10.1021/acsaem.9b01673

    21. [21]

      Cai M J, Wu Z Y, Li Z, Wang L, Sun W, Tountas A A, Li C R, Wang S H, Feng K, Xu A B, Tang S L, Tavasoli A, Peng M W, Liu W X, Helmy A S, He L, Ozin G A, Zhang X H. Greenhouse-inspired supraphotothermal CO2 catalysis[J]. Nat. Energy, 2021,6(8):807-814. doi: 10.1038/s41560-021-00867-w

    22. [22]

      Ren G M, Shi M, Li Z Z, Zhang Z S, Meng X C. Electronic metal-support interaction via defective-induced platinum modified BiOBr for photocatalytic N2 fixation[J]. Appl. Catal. B, 2023,327122462. doi: 10.1016/j.apcatb.2023.122462

    23. [23]

      Shi M, Ren G M, Zhang Z S, Li Z Z, Meng X C. Strong metal-carrier interactions via modulation of Pt oxidation states on defective BiOBr with greatly improved photocatalytic activity[J]. Sol. Energy, 2023,261:33-42. doi: 10.1016/j.solener.2023.05.049

    24. [24]

      Zhang G Q, Cai L, Zhang Y F, Wei Y. Bi5+, Bi(3-x)+, and oxygen vacancy induced BiOClxI1-x solid solution toward promoting visiblelight driven photocatalytic activity[J]. Chem.-Eur. J., 2018,24(29):7434-7444. doi: 10.1002/chem.201706164

    25. [25]

      Wang B, Zhang W, Liu G P, Chen H L, Weng Y X, Li H M, Chu P K, Xia J X. Excited electron-rich Bi (3-x)+sites: A quantum well-like structure for highly promoted selective photocatalytic CO2 reduction performance[J]. Adv. Funct. Mater., 2022,32(35)2202885. doi: 10.1002/adfm.202202885

    26. [26]

      Wu J, Li X D, Shi W, Ling P Q, Sun Y F, Jiao X C, Gao S, Liang L, Xu J Q, Yan W S, Wang C M, Xie Y. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers[J]. Chem. Int. Ed., 2018,57(28):8719-8723. doi: 10.1002/anie.201803514

    27. [27]

      Gong M, Zhao H, Pan C S, Dong Y M, Guo Y X, Li H X, Zhang J W, Wang G L, Zhu Y F. Highly selective photocatalytic oxidation of 5-hydroxy-methylfurfural by interfacial Pt—O bonding Pt-Ov-BiOBr[J]. New J. Chem., 2023,47(15):7118-7126. doi: 10.1039/D3NJ00498H

    28. [28]

      Xu C P, Ravi Anusuyadevi P, Aymonier C, Luque R, Marre S. Nanostructured materials for photocatalysis[J]. Chem. Soc. Rev., 2019,48(14):3868-3902. doi: 10.1039/C9CS00102F

    29. [29]

      Wei Y Z, Yang N L, Huang K K, Wan J W, You F F, Yu R B, Feng S H, Wang D. Steering hollow multishelled structures in photocatalysis: Optimizing surface and mass transport[J]. Adv. Mater., 2020,32(44)2002556. doi: 10.1002/adma.202002556

    30. [30]

      Wang L B, Cheng B, Zhang L Y, Yu J G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small,2021,17(41): e2103447

    31. [31]

      Li X M, Dong Q B, Li F, Zhu Q H, Tian Q Y, Tian L, Zhu Y Y, Pan B, Padervand M, Wang C Y. Defective Bi@BiOBr/C microrods derived from Bi-MOF for efficient photocatalytic NO abatement: Directional regulation of interfacial charge transfer via carbon-loading[J]. Appl. Catal. B, 2024,340123238. doi: 10.1016/j.apcatb.2023.123238

    32. [32]

      Li X D, Wang S M, Li L, Sun Y F, Xie Y. Progress and perspective for in situ studies of CO2 reduction[J]. J. Am. Chem. Soc., 2020,142(21):9567-9581.

    33. [33]

      Wang X Y, Wang Y S, Gao M C, Shen J N, Pu X P, Zhang Z Z, Lin H X, Wang X X. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Appl. Catal. B-Environ.,2020,270: 118876

    34. [34]

      Gao S Q, Zhang Q, Su X F, Wu X K, Zhang X G, Guo Y Y, Li Z Y, Wei J S, Wang H Y, Zhang S J, Wang J J. Ingenious artificial leaf based on covalent organic framework membranes for boosting CO2 photoreduction[J]. J. Am. Chem. Soc., 2023,145(17):9520-9529. doi: 10.1021/jacs.2c11146

    35. [35]

      Zhang Z Z, Wang M Y, Chi Z X, Li W J, Yu H, Yang N, Yu H B. Internal electric field engineering step-scheme-based heterojunction using lead free Cs3Bi2Br9 perovskite modified In4SnS8 for selective photocatalytic CO2 reduction to CO[J]. Appl. Catal. B, 2022,313121426. doi: 10.1016/j.apcatb.2022.121426

    36. [36]

      Ou H H, Ning S B, Zhu P, Chen S H, Han A, Kang Q, Hu Z F, Ye J H, Wang D S, Li Y D. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion[J]. Chem. Int. Ed., 2022,61(34)e202206579. doi: 10.1002/anie.202206579

    37. [37]

      Lv C M, Huang K, Fan Y, Xu J, Lian C, Jiang H L, Zhang Y Z, Ma C, Qiao W M, Wang J T, Ling L C. Electrocatalytic reduction of carbon dioxide in confined microspace utilizing single nickel atom decorated nitrogen-doped carbon nanospheres[J]. Nano Energy, 2023,111108384. doi: 10.1016/j.nanoen.2023.108384

    38. [38]

      Zou H Y, Zhao G, Dai H, Dong H L, Luo W, Wang L, Lu Z G, Luo Y, Zhang G Z, Duan L L. Electronic perturbation of copper singleatom CO2 reduction catalysts in a molecular way[J]. Angew. Chem. Int. Ed., 2022,62(6)e202217220.

    39. [39]

      Wang F L, Fang R Q, Zhao X, Kong X P, Hou T T, Shen K, Li Y W. Ultrathin nanosheet assembled multishelled superstructures for photocatalytic CO2 reduction[J]. ACS Nano, 2022,16(3):4517-4527. doi: 10.1021/acsnano.1c10958

  • 加载中
    1. [1]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    11. [11]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(0)
  • Abstract views(176)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return