Citation: Yufang GAO, Nan HOU, Yaning LIANG, Ning LI, Yanting ZHANG, Zelong LI, Xiaofeng LI. Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036 shu

Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction

  • Corresponding author: Xiaofeng LI, lixiaofeng6008@163.com
  • Received Date: 25 January 2024
    Revised Date: 22 April 2024

Figures(8)

  • A nano-thin layer MWW-type zeolite, derived from fumed silica, was dynamically in-situ synthesized at 150 ℃ using a dual-template system of cetyltrimethylammonium bromide (CTAB) and hexamethylene imine(HMI). The effect of CTAB amount on the zeolite was also investigated. The nano-thin layer samples were characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), N2 adsorption-desorption, ammonia temperature programmed desorption (NH3-TPD), high-resolution transmission electron microscopy (HRTEM), pyridine infrared spectroscopy (Py-IR), and 2, 6-di-tert-butylpyridine infrared spectroscopy (DTBPy-IR). The results indicated that MWW nanosheets with a thickness of 5-10 nm can be prepared using the double template system. Furthermore, the catalytic performance of the samples was evaluated through the isomerization of the trimethylbenzenes reaction. The catalytic results show that the sample d-MWW-4%CTAB exhibits good catalytic performance, with the conversion of 1, 2, 4-trimethylbenzene, the yield of 1, 3, 5-trimethylbenzene, and the selectivity of 1, 3, 5-trimethylbenzene being 34.97%, 22.42%, and 64.09%, respectively. This is primarily attributed to the external surface area and interlayer mesoporous structure formed in the nano-thin layer MCM-22.
  • 加载中
    1. [1]

      Rubin M K, Chu P. Composition of synthetic porous crystalline material, its synthesis and use: US4954325. 1990-09-04.

    2. [2]

      Leonowicz M E, Lawton J A, Lawton S L, Rubin M K. MCM-22: A molecular sieve with two independent multidimensional channel systems[J]. Science, 1994,264(5167):1910-1913. doi: 10.1126/science.264.5167.1910

    3. [3]

      Corma A, Fornés V, Pergher S B, Maesen T L M, Buglass J G. Delaminated zeolite precursors as selective acidic catalysts[J]. Nature, 1998,396(6709):353-356. doi: 10.1038/24592

    4. [4]

      Liu Y, Qiang W L, Ji T T, Zhang M, Li M R, Lu J M. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Sci. Adv., 2020,6(7):1-8.

    5. [5]

      Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: Synthesis and exceptional catalytic properties[J]. Chem. Mat., 2010,22(9):2757-2763. doi: 10.1021/cm903645p

    6. [6]

      Zhou D, Zhang T J, Xia Q H, Zhao Y R, Lv K V, Lu X H, Nie R F. One‑pot rota‑crystallized hollownest‑structured Ti‑zeolite: A calcination-free and recyclable catalytic material[J]. Chem. Sci., 2016,7(8):4966-4972. doi: 10.1039/C6SC01735E

    7. [7]

      Schwanke A, Villarroel-Rocha J, Sapag K, Díaz U, Corma A, Pergher S. Dandelion-like microspherical MCM-22 zeolite using BP 2000 as a hard template[J]. ACS Omega, 2018,3(6):6217-6223. doi: 10.1021/acsomega.8b00647

    8. [8]

      Chen J Q, Li Y Z, Hao Q Q, Chen H Y, Liu Z T, Dai C Y, Zhang J B, Ma X X, Liu Z W. Controlled direct synthesis of single-to-multiple-layer MWW zeolite[J]. Natl. Sci. Rev., 2021,8(7):1-8.

    9. [9]

      Xu L, Sun J L. Recent advances in the synthesis and application of two-dimensional zeolites[J]. Adv. Energy Mater., 2016,6(17):1-18.

    10. [10]

      Přech J, Pizarro P, Serrano D P, Čejka J. From 3D to 2D zeolite catalytic materials[J]. Chem. Soc. Rev., 2018,47(22):8263-8306. doi: 10.1039/C8CS00370J

    11. [11]

      Margarit V J, Martínez‐Armero M E, Navarro M T, Martínez Z, Corma A. Direct dual‐template synthesis of MWW zeolite monolayers[J]. Angew. Chem. Int. Ed., 2015,54(46):13724-13728. doi: 10.1002/anie.201506822

    12. [12]

      Wang Z D, Cichocka M O, Luo Y, Zhang B, Sun H M, Tang Y, Yang W M. Controllable direct-syntheses of delaminated MWW-type zeolites[J]. Chin. J. Catal., 2020,41(7):1062-1066. doi: 10.1016/S1872-2067(20)63545-8

    13. [13]

      Cao S W, Shang Y S, Liu Y S, Wang J, Sun Y, Gong Y J, Mo G, Li Z H, Liu P. "Desert rose" MCM-22 microsphere: Synthesis, formation mechanism and alkylation performance[J]. Microporous Mesoporous Mat., 2021,315:1-12.

    14. [14]

      Cao S W, Sun Y, Shang Y S, Wang J, Gong Y J, Mo G, Li Z H, Zhang Z D, Ma A. Dual-template synthesis of thinner-layered MCM-49 zeolite to boost its alkylation performance[J]. Mol. Catal., 2022,524:1-11.

    15. [15]

      YUAN M T. Synthesis and pillaring of nanosheets zeolites for alkylation reaction. Xi'an: Northwest University, 2020: 28-44

    16. [16]

      Toprakci I, Ozdemir H, Oksuzomer M A F, Sahin S. H-MCM-22 synthesis, characterization, and application: Perfomance for the removal of diclofenac from aqueous solution[J]. Biomass Convers. Biorefinery, 2023:1-10.

    17. [17]

      Zhou Y W, Mu Y Y, Hsieh M F, Kabius B, Pacheco C, Bator C, Rioux R M, Rimer J D. Enhanced surface activity of MWW zeolite nanosheets prepared via a one-step synthesis[J]. J. Am. Chem. Soc., 2020,142(18):8211-8222.

    18. [18]

      Sahu P, Sahu A, Sakthivel A. Cyclocondensation of anthranilamide with aldehydes on gallium-containing MCM-22 zeolite materials[J]. ACS omega, 2021,6(43):28828-28837.

    19. [19]

      Corma A, Corell C, Fornés V, Kolodziejski W, Pérez-Parente J. Infrared spectroscopy, thermoprogrammed desorption, and nuclear magnetic resonance study of the acidity, structure, and stability of zeolite MCM-22[J]. Zeolites, 1995,15(7):576-582.

    20. [20]

      Liu B Y, Liao Z T, Wu Y, Ding C H, Butt F S, Huang Y, Dong J X. Efficient production of linear alkylbenzene by liquid alkylation between benzene and 1-dodecene over MWW zeolites[J]. Mol. Catal., 2022,531:1-10.

    21. [21]

      Golabek K, Tarach K A, Góra-Marek K. Standard and rapid scan infrared spectroscopic studies of o-xylene transformations in terms of pore arrangement of 10-ring zeolites-2D COS analysis[J]. Dalton Trans., 2017,46:9934-9950.

    22. [22]

      LI L Y, CHEN Y, XU Z Q, YUAN Z Q, WANG Y D, HE H Y, YANG W M. Adsorption and diffusion of mesitylene on MCM-22 and MCM-56 molecular sieves[J]. Industrial Catalysis, 2013,21(7):30-34.  

  • 加载中
    1. [1]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    2. [2]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    5. [5]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    8. [8]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    9. [9]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    10. [10]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    11. [11]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    12. [12]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    13. [13]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    14. [14]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    15. [15]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    16. [16]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    20. [20]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

Metrics
  • PDF Downloads(11)
  • Abstract views(1493)
  • HTML views(448)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return