Citation: Yufang GAO, Nan HOU, Yaning LIANG, Ning LI, Yanting ZHANG, Zelong LI, Xiaofeng LI. Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036 shu

Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction

  • Corresponding author: Xiaofeng LI, lixiaofeng6008@163.com
  • Received Date: 25 January 2024
    Revised Date: 22 April 2024

Figures(8)

  • A nano-thin layer MWW-type zeolite, derived from fumed silica, was dynamically in-situ synthesized at 150 ℃ using a dual-template system of cetyltrimethylammonium bromide (CTAB) and hexamethylene imine(HMI). The effect of CTAB amount on the zeolite was also investigated. The nano-thin layer samples were characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), N2 adsorption-desorption, ammonia temperature programmed desorption (NH3-TPD), high-resolution transmission electron microscopy (HRTEM), pyridine infrared spectroscopy (Py-IR), and 2, 6-di-tert-butylpyridine infrared spectroscopy (DTBPy-IR). The results indicated that MWW nanosheets with a thickness of 5-10 nm can be prepared using the double template system. Furthermore, the catalytic performance of the samples was evaluated through the isomerization of the trimethylbenzenes reaction. The catalytic results show that the sample d-MWW-4%CTAB exhibits good catalytic performance, with the conversion of 1, 2, 4-trimethylbenzene, the yield of 1, 3, 5-trimethylbenzene, and the selectivity of 1, 3, 5-trimethylbenzene being 34.97%, 22.42%, and 64.09%, respectively. This is primarily attributed to the external surface area and interlayer mesoporous structure formed in the nano-thin layer MCM-22.
  • 加载中
    1. [1]

      Rubin M K, Chu P. Composition of synthetic porous crystalline material, its synthesis and use: US4954325. 1990-09-04.

    2. [2]

      Leonowicz M E, Lawton J A, Lawton S L, Rubin M K. MCM-22: A molecular sieve with two independent multidimensional channel systems[J]. Science, 1994,264(5167):1910-1913. doi: 10.1126/science.264.5167.1910

    3. [3]

      Corma A, Fornés V, Pergher S B, Maesen T L M, Buglass J G. Delaminated zeolite precursors as selective acidic catalysts[J]. Nature, 1998,396(6709):353-356. doi: 10.1038/24592

    4. [4]

      Liu Y, Qiang W L, Ji T T, Zhang M, Li M R, Lu J M. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Sci. Adv., 2020,6(7):1-8.

    5. [5]

      Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: Synthesis and exceptional catalytic properties[J]. Chem. Mat., 2010,22(9):2757-2763. doi: 10.1021/cm903645p

    6. [6]

      Zhou D, Zhang T J, Xia Q H, Zhao Y R, Lv K V, Lu X H, Nie R F. One‑pot rota‑crystallized hollownest‑structured Ti‑zeolite: A calcination-free and recyclable catalytic material[J]. Chem. Sci., 2016,7(8):4966-4972. doi: 10.1039/C6SC01735E

    7. [7]

      Schwanke A, Villarroel-Rocha J, Sapag K, Díaz U, Corma A, Pergher S. Dandelion-like microspherical MCM-22 zeolite using BP 2000 as a hard template[J]. ACS Omega, 2018,3(6):6217-6223. doi: 10.1021/acsomega.8b00647

    8. [8]

      Chen J Q, Li Y Z, Hao Q Q, Chen H Y, Liu Z T, Dai C Y, Zhang J B, Ma X X, Liu Z W. Controlled direct synthesis of single-to-multiple-layer MWW zeolite[J]. Natl. Sci. Rev., 2021,8(7):1-8.

    9. [9]

      Xu L, Sun J L. Recent advances in the synthesis and application of two-dimensional zeolites[J]. Adv. Energy Mater., 2016,6(17):1-18.

    10. [10]

      Přech J, Pizarro P, Serrano D P, Čejka J. From 3D to 2D zeolite catalytic materials[J]. Chem. Soc. Rev., 2018,47(22):8263-8306. doi: 10.1039/C8CS00370J

    11. [11]

      Margarit V J, Martínez‐Armero M E, Navarro M T, Martínez Z, Corma A. Direct dual‐template synthesis of MWW zeolite monolayers[J]. Angew. Chem. Int. Ed., 2015,54(46):13724-13728. doi: 10.1002/anie.201506822

    12. [12]

      Wang Z D, Cichocka M O, Luo Y, Zhang B, Sun H M, Tang Y, Yang W M. Controllable direct-syntheses of delaminated MWW-type zeolites[J]. Chin. J. Catal., 2020,41(7):1062-1066. doi: 10.1016/S1872-2067(20)63545-8

    13. [13]

      Cao S W, Shang Y S, Liu Y S, Wang J, Sun Y, Gong Y J, Mo G, Li Z H, Liu P. "Desert rose" MCM-22 microsphere: Synthesis, formation mechanism and alkylation performance[J]. Microporous Mesoporous Mat., 2021,315:1-12.

    14. [14]

      Cao S W, Sun Y, Shang Y S, Wang J, Gong Y J, Mo G, Li Z H, Zhang Z D, Ma A. Dual-template synthesis of thinner-layered MCM-49 zeolite to boost its alkylation performance[J]. Mol. Catal., 2022,524:1-11.

    15. [15]

      YUAN M T. Synthesis and pillaring of nanosheets zeolites for alkylation reaction. Xi'an: Northwest University, 2020: 28-44

    16. [16]

      Toprakci I, Ozdemir H, Oksuzomer M A F, Sahin S. H-MCM-22 synthesis, characterization, and application: Perfomance for the removal of diclofenac from aqueous solution[J]. Biomass Convers. Biorefinery, 2023:1-10.

    17. [17]

      Zhou Y W, Mu Y Y, Hsieh M F, Kabius B, Pacheco C, Bator C, Rioux R M, Rimer J D. Enhanced surface activity of MWW zeolite nanosheets prepared via a one-step synthesis[J]. J. Am. Chem. Soc., 2020,142(18):8211-8222.

    18. [18]

      Sahu P, Sahu A, Sakthivel A. Cyclocondensation of anthranilamide with aldehydes on gallium-containing MCM-22 zeolite materials[J]. ACS omega, 2021,6(43):28828-28837.

    19. [19]

      Corma A, Corell C, Fornés V, Kolodziejski W, Pérez-Parente J. Infrared spectroscopy, thermoprogrammed desorption, and nuclear magnetic resonance study of the acidity, structure, and stability of zeolite MCM-22[J]. Zeolites, 1995,15(7):576-582.

    20. [20]

      Liu B Y, Liao Z T, Wu Y, Ding C H, Butt F S, Huang Y, Dong J X. Efficient production of linear alkylbenzene by liquid alkylation between benzene and 1-dodecene over MWW zeolites[J]. Mol. Catal., 2022,531:1-10.

    21. [21]

      Golabek K, Tarach K A, Góra-Marek K. Standard and rapid scan infrared spectroscopic studies of o-xylene transformations in terms of pore arrangement of 10-ring zeolites-2D COS analysis[J]. Dalton Trans., 2017,46:9934-9950.

    22. [22]

      LI L Y, CHEN Y, XU Z Q, YUAN Z Q, WANG Y D, HE H Y, YANG W M. Adsorption and diffusion of mesitylene on MCM-22 and MCM-56 molecular sieves[J]. Industrial Catalysis, 2013,21(7):30-34.  

  • 加载中
    1. [1]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    2. [2]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    14. [14]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

Metrics
  • PDF Downloads(3)
  • Abstract views(256)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return