Citation: Zeyuan WANG, Songzhi ZHENG, Hao LI, Jingbo WENG, Wei WANG, Yang WANG, Weihai SUN. Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021 shu

Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells

  • Corresponding author: Weihai SUN, sunweihai@hqu.edu.cn
  • Received Date: 17 January 2024
    Revised Date: 1 May 2024

Figures(8)

  • The CsPbBr3 absorber layer made from CsBr aqueous solution was modified by spin-coating I2 isopropa- nol solution, which the surface defects of the CsPbBr3 layer were passivated, and the CsPbBr3 film with better mor- phology was obtained. The solar cells were optimized by exploring different spin-coating concentrations of CsBr methanol solution, and when 5 mg·mL-1 I2 isopropanol solution was used for interface modification, the perovskite film was significantly improved in morphology from the result of X-ray diffraction, scanning electron microscope and had the best optoelectronic performance. As a consequence, CsPbBr3-based perovskite solar cells (PSCs) with 5 mg· mL-1I2 isopropanol solution can reach the best open-circuit voltage (VOC), short circuit current density (JSC), fill factor (FF) of 1.55 V, 7.45 mA·cm-2, 85.54%, respectively, and the ultimate photoelectric conversion efficiency (PCE) attained 9.88%.
  • 加载中
    1. [1]

      ZHU C W, JIN Y N, ZHANG C H, CHEN H H, CHEN S T, FU Y M, WU Y J, SUN W H. High-performance and stable perovskite solar cells prepared with a green bi‑solvent method[J]. Chinese J. Inorg. Chem., 2023,39(6):1061-1071.  

    2. [2]

      Lin W H, Wu J H, Tian J X, Lin Y H, Yang P Z, Huang Y H, Jiang X Y, Gao L, Wang Y, Sun W H, Lan Z, Huang M L. Synergistic effect of 2-(trifluoromethyl) benzimidazole on the stability and performance of perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2023,15(30):36468-36476. doi: 10.1021/acsami.3c08583

    3. [3]

      NREL. Best research cell efficiencies chart. (2022)[2024-01-17]. https://www.nrel.gov/pv/cell-efficiency.html.

    4. [4]

      Wang S B, Cao F X, Wu Y J, Zhang X C, Zou J J, Lan Z, Sun W H, Wu J H, Gao P. Multifunctional 2D perovskite capping layer using cyclohexylmethylammonium bromide for highly efficient and stable perovskite solar cells[J]. Mater. Today Phys., 2021,21100543. doi: 10.1016/j.mtphys.2021.100543

    5. [5]

      Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett., 2013,13(4):1764-1769. doi: 10.1021/nl400349b

    6. [6]

      Liang S H, Sheng H F, Liu Y, Huo Z, Lu Y C, Shen H E. ZnO Schottky ultraviolet photodetectors[J]. J. Cryst. Growth, 2001,225(2/3/4):110-113.

    7. [7]

      DUAN J L. Defect state passivation strategy for all‑inorganic perovskite films//Photochemistry Professional Committee of China Renewable Energy Society. Proceedings of the 10th Conference on Science and Technology of Emerging Solar Energy Materials. Beijing: Photochemistry Committee of Chinese Renewable Energy Society, 2023: 80

    8. [8]

      YAN J D, DING L M, YANG A F, YANG T, REN H X. Frontiers and trends in perovskite solar cell research[J]. Science and Technology of China, 2019(1):4-6.  

    9. [9]

      Ullah S, Wang J M, Yang P X, Liu L L, Yang S, Xia T Y, Guo H Z, Chen Y S. All-inorganic CsPbBr3 perovskite: A promising choice for photovoltaics[J]. Mater. Adv., 2021,2(2):646-683. doi: 10.1039/D0MA00866D

    10. [10]

      Cao F X, Chen H W, Wang S B, Chen P X, Zhu C W, Lan Z, Sun W H, Li Y L, Wu J H. One-step constructed dual interfacial layers for stable perovskite solar cells[J]. Mater. Today Phys., 2022,27100796. doi: 10.1016/j.mtphys.2022.100796

    11. [11]

      Wang S B, Cao F X, Chen P X, He R W, Tong A L, Lan Z, Gao P, Sun W H, Wu J H. Two birds with one stone: Simultaneous realization of constructed 3D/2D heterojunction and P-doping of hole transport layer for highly efficient and stable perovskite solar cells[J]. Chem. Eng. J., 2023,453139721. doi: 10.1016/j.cej.2022.139721

    12. [12]

      Yakunin S, Dirin D N, Shynkarenko Y, Morad V, Cherniukh I, Nazarenko O, Kreil D, Nauser T, Kovalenko M V. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites[J]. Nat. Photonics, 2016,10(9):585-589. doi: 10.1038/nphoton.2016.139

    13. [13]

      Kieslich G, Sun S J, Cheetham A K. An extended Tolerance Factor approach for organic-inorganic perovskites[J]. Chem. Sci., 2015,6(6):3430-3433. doi: 10.1039/C5SC00961H

    14. [14]

      Wang S B, Cao F X, Sun W H, Wang C Y, Yan Z L, Wang N, Lan Z, Wu J H. A green Bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Mater. Today Phys., 2022,22100614. doi: 10.1016/j.mtphys.2022.100614

    15. [15]

      Zhang D, Yuan J F, Tian J J. All-inorganic perovskite solar cells with efficiency > 20%[J]. Sci. China-Mater., 2021,64(10):2624-2626. doi: 10.1007/s40843-021-1726-9

    16. [16]

      Duan C H, Wen Q Y, Fan Y, Li J, Liu Z D, Yan K Y. Improving the stability and scalability of all-inorganic inverted CsPbI2Br perovskite solar cell[J]. J. Energy Chem., 2022,68:176-183. doi: 10.1016/j.jechem.2021.11.026

    17. [17]

      Duan J L, Zhao Y Y, He B L, Tang Q W. Simplified perovskite solar cell with 4[J]. 1% efficiency employing inorganic CsPbBr3 as light absorber. Small, 2018,14(20)1704443.

    18. [18]

      Liu J M, Wu J H, Li G D, Chen Q, Chen X, Geng J L, Ou Yang Q, Sun W H, Lan Z. Interfacial defect passivation effect of N-methyl-N-(thien-2-ylmethyl)amine for highly effective perovskite solar cells[J]. ACS Appl. Energy Mater., 2022,5(4):4270-4278. doi: 10.1021/acsaem.1c03842

    19. [19]

      Li G D, Song J, Wu J H, Xu Y, Deng C Y, Song Z Y, Wang X B, Du Y T, Chen Q, Li R S, Sun W H, Lan Z. Surface defect passivation by 1, 8-naphthyridine for efficient and stable formamidinium-based 2D/3D perovskite solar cells[J]. Chem. Eng. J., 2022,449137806. doi: 10.1016/j.cej.2022.137806

    20. [20]

      Wang D, Li W J, Sun W H, Liu X P, Li G D, Wu Z B, Wu J H, Lan Z. Guanidinium iodide modification enabled highly efficient and stable all-inorganic CsPbBr3 perovskite solar cells[J]. Electrochim. Acta, 2021,365137360. doi: 10.1016/j.electacta.2020.137360

    21. [21]

      Kim S, Chen J Z, Seo J, Kang D, Park N. Rear-surface passivation by melaminium iodide additive for stable and hysteresis-less perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2018,10(30):25372-25383. doi: 10.1021/acsami.8b06616

    22. [22]

      LI X Y, DONG H Y, XIA T, LIU W T, YAO D S, LONG F. Investigation of post-treatment via tri-iodine for perovskite solar cells[J]. Acta Energiae Solaris Sinica, 2023,44(3):409-414.  

    23. [23]

      Yuan H W, Zhao Y Y, Duan J L, Wang Y D, Yang X Y, Tang Q W. All-inorganic CsPbBr3 perovskite solar cell with 10[J]. 26% efficiency by spectra engineering. J. Mater. Chem. A, 2018,6(47):24324-24329.

    24. [24]

      Chang X W, Li W P, Zhu L Q, Liu H C, Geng H F, Xiang S S, Liu J M, Chen H N. Carbon-based CsPbBr3 perovskite solar cells: All- ambient processes and high thermal stability[J]. ACS Appl. Mater. Interfaces, 2016,8(49):33649-33655. doi: 10.1021/acsami.6b11393

    25. [25]

      Liu J M, Zhu L Q, Xiang S S, Wei Y, Xie M L, Liu H C, Li W P, Chen H N. Growing high-quality CsPbBr3 by using porous CsPb2Br5 as an intermediate: A promising light absorber in carbon-based perovskite solar cells[J]. Sustain. Energy Fuels, 2019,3(1):184-194. doi: 10.1039/C8SE00442K

    26. [26]

      Li X K, He B L, Gong Z K, Zhu J W, Zhang W Y, Chen H Y, Duan Y Y, Tang Q W. Compositional engineering of chloride ion-doped CsPbBr3 halides for highly efficient and stable all‑inorganic perovskite solar cells[J]. Sol. RRL, 2020,4(10)2000362. doi: 10.1002/solr.202000362

    27. [27]

      Li Y N, Duan J L, Yuan H W, Zhao Y Y, He B L, Tang Q W. Lattice modulation of alkali metal cations doped Cs1-xRxPbBr3 halides for inorganic perovskite solar cells[J]. Sol. RRL, 2018,2(10)1800164. doi: 10.1002/solr.201800164

    28. [28]

      Niu G D, Guo X D, Wang L D. Review of recent progress in chemical stability of perovskite solar cells[J]. J. Mater. Chem. A, 2015,3(17):8970-8980. doi: 10.1039/C4TA04994B

    29. [29]

      Wang K, Shi Y T, Gao L G, Chi R H, Shi K, Guo B Y, Zhao L, Ma T L. W(Nb)Ox-based efficient flexible perovskite solar cells: From material optimization to working principle[J]. Nano Energy, 2017,31:424-431. doi: 10.1016/j.nanoen.2016.11.054

    30. [30]

      Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S. Electron‑hole diffusion lengths > 175 μm in solution‑grown CH3NH3PbI3 single crystals[J]. Science, 2015,347(6225):967-970. doi: 10.1126/science.aaa5760

    31. [31]

      Zhu W D, Bao C X, Lv B H, Li F M, Yi Y, Wang Y R Q, Yang J, Wang X Y, Yu T, Zou Z G. Dramatically promoted crystallization control of organolead triiodide perovskite film by a homogeneous cap for high efficiency planar-heterojunction solar cells[J]. J. Mater. Chem. A, 2016,4(32):12535-12542. doi: 10.1039/C6TA04332A

    32. [32]

      ZHOU C, PANG B L. Effects of different solvent on the performance of CsPbBr3 inorganic perovskite solar cells[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2022,43(3):20-25.  

    33. [33]

      Zou Y, Cao F X, Chen P X, He R W, Tong A L, Yin C, Lan Z, Sun W H, Wu J H. Stable and highly efficient all-inorganic CsPbBr3 perovskite solar cells by interface engineering with NiO NCs modification[J]. Electrochim. Acta, 2022,435141392. doi: 10.1016/j.electacta.2022.141392

    34. [34]

      Tong A L, Zhu C W, Yan H Y, Zhang C H, Jin Y N, Wu Y J, Cao F X, Wu J H, Sun W H. Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation[J]. J. Alloy. Compd., 2023,942169084. doi: 10.1016/j.jallcom.2023.169084

    35. [35]

      Yuan H W, Zhao Y Y, Duan J L, He B L, Jiao Z B, Tang Q W. Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells[J]. Electrochim. Acta, 2018,279:84-90. doi: 10.1016/j.electacta.2018.05.087

    36. [36]

      Hu L, Duan L P, Yao Y C, Chen W J, Zhou Z Z, Cazorla C, Lin C, Guan X W, Geng X, Wang F, Wan T, Wu S Y, Cheong S, Tilley R D, Liu S Q, Yuan J Y, Chu D W, Wu T, Huang S J. Quantum dot passivation of halide perovskite films with reduced defects, suppressed phase segregation, and enhanced stability[J]. Adv. Sci., 2022,9(2)2102258. doi: 10.1002/advs.202102258

    37. [37]

      Karunakaran S K, Arumugam G M, Yang W T, Ge S J, Khan S N, Mai Y H, Lin X Z, Yang G W. Europium(Ⅱ)-doped all-inorganic CsPbBr3 perovskite solar cells with carbon electrodes[J]. Sol. RRL, 2020,4(11)2000390. doi: 10.1002/solr.202000390

    38. [38]

      Liu Y L, Zhou C, Cui C, Liu X, Pang B L, Feng J G, Dong H Z, Yu L Y, Dong L F. Enhancement of CsPbBr3 hole-free perovskite solar cells through natural dye modifications[J]. Sol. RRL, 2023,7(24)2300454. doi: 10.1002/solr.202300454

    39. [39]

      Ding Y, He B L, Zhu J W, Zhang W Y, Su G D, Duan J L, Zhao Y Y, Chen H Y, Tang Q W. Advanced modification of perovskite surfaces for defect passivation and efficient charge extraction in air-stable cspbbr3 perovskite solar cells[J]. ACS Sustain. Chem. Eng., 2019,7(23):19286-19294. doi: 10.1021/acssuschemeng.9b05631

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    14. [14]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    15. [15]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    18. [18]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    19. [19]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    20. [20]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

Metrics
  • PDF Downloads(5)
  • Abstract views(365)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return