Citation: Yifan LIU, Zhan ZHANG, Rongmei ZHU, Ziming QIU, Huan PANG. A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008 shu

A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction

Figures(6)

  • A novel Cu-based composite with unique three-dimensional (3D) nanoflower-like morphology and mesoporous structure (abbreviated as Cu-NF) was developed, using zeolitic imidazolate framework-67 (ZIF-67) as precursor via facile Cu ion etching, followed by low-temperature calcination strategy. The mass ratio of Cu2+ to ZIF-67 played a key role in morphology control. Additionally, low-temperature calcination changed the chemical components of the active sites and improved the porosity for mass transportation with the original morphology preserved. Sample Cu-NF-300, calcined at 300 ℃ displayed the best oxygen evolution reaction (OER) performance among all the samples, with a small overpotential of 347 mV in 1.0 mol·L-1 KOH and a low Tafel slope of 93 mV·dec-1 for OER. Significant improvement in the electrochemical activity is attributed to the 3D superstructure and low-temperature calcination activation, which offer a simple synthetic strategy for the fabrication of Cu-based electrocatalysts for OER.
  • 加载中
    1. [1]

      Chatenet M, Pollet B G, Dekel D R, Dionigi F, Deseure J, Millet P, Braatz R D, Bazant M Z, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments[J]. Chem. Soc. Rev., 2022,51(11):4583-4762. doi: 10.1039/D0CS01079K

    2. [2]

      Liang Z B, Zhao R, Qiu T J, Zou R Q, Xu Q. Metal-organic framework-derived materials for electrochemical energy applications[J]. EnergyChem, 2019,1(1)100001. doi: 10.1016/j.enchem.2019.100001

    3. [3]

      Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z C J. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chem. Soc. Rev., 2020,49(7):2196-2214. doi: 10.1039/C9CS00607A

    4. [4]

      Masa J, Andronescu C, Schuhmann W. Electrocatalysis as the nexus for sustainable renewable energy: The gordian knot of activity, stability, and selectivity[J]. Angew. Chem. Int. Ed., 2020,59(36):15298-15312. doi: 10.1002/anie.202007672

    5. [5]

      Zhang K X, Zou R Q. Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges[J]. Small, 2021,17(37)2100129. doi: 10.1002/smll.202100129

    6. [6]

      Xu Y M, Fan K C, Zou Y, Fu H Q, Dong M Y, Dou Y H, Wang Y, Chen S, Yin H J, Al-Mamun M, Liu P R, Zhao H J. Rational design of metal oxide catalysts for electrocatalytic water splitting[J]. Nanoscale, 2021,13(48):20324-20353. doi: 10.1039/D1NR06285A

    7. [7]

      Hong C B, Li X F, Wei W B, Wu X T, Zhu Q L. Nano-engineering of Ru-based hierarchical porous nanoreactors for highly efficient pH-universal overall water splitting[J]. Appl. Catal. B-Environ., 2021,294120230. doi: 10.1016/j.apcatb.2021.120230

    8. [8]

      Yao Q, Huang B L, Zhang N, Sun M Z, Shao Q, Huang X Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis[J]. Angew. Chem. Int. Ed., 2019,58(39):13983-13988. doi: 10.1002/anie.201908092

    9. [9]

      Sardar K, Ball S C, Sharman J D B, Thompsett D, Fisher J M, Smith R A P, Biswas P K, Lees M R, Kashtiban R J, Sloan J, Walton R I. Bismuth iridium oxide oxygen evolution catalyst from hydrothermal synthesis[J]. Chem. Mater., 2012,24(21):4192-4200. doi: 10.1021/cm302468b

    10. [10]

      Hao J, Wu K L, Lyu C J, Yang Y Q, Wu H J, Liu J J, Liu N Y, Lau W M, Zheng J L. Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting[J]. Mater. Horizons, 2023,10(7):2312-2342. doi: 10.1039/D3MH00366C

    11. [11]

      Wei Y, Zheng M B, Zhu W, Zhang Y, Hu W H, Pang H. Preparation of hierarchical hollow CoFe Prussian blue analogues and its heat-treatment derivatives for the electrocatalyst of oxygen evolution reaction[J]. J. Colloid Interface Sci., 2023,631:8-16. doi: 10.1016/j.jcis.2022.11.014

    12. [12]

      Hu L Y, Tian L L, Ding X, Wang X, Wang X S, Qin Y, Gu W L, Shi L, Zhu C Z. p-d hybridization in CoFe LDH nanoflowers for efficient oxygen evolution electrocatalysis[J]. Inorg. Chem. Front., 2022,9(20):5296-5304. doi: 10.1039/D2QI01688E

    13. [13]

      Zhang H, Meng G, Wei T R, Ding J Y, Liu Q, Luo J, Liu X J. Co doping promotes the alkaline overall seawater electrolysis performance over MnPSe3 nanosheets[J]. Chem. Commun., 2023,59:12144-12147. doi: 10.1039/D3CC03434H

    14. [14]

      Zhang X, Yan F, Ma X Z, Zhu C L, Wang Y, Xie Y, Chou S L, Huang Y J, Chen Y J. Regulation of morphology and electronic structure of FeCoNi layered double hydroxides for highly active and stable water oxidization catalysts[J]. Adv. Energy Mater., 2021,11(48)2102141. doi: 10.1002/aenm.202102141

    15. [15]

      Huang Y, Zhang S L, Lu X F, Wu Z P, Luan D Y, Lou X W. Trimetallic spinel NiCo2-xFexO4 nanoboxes for highly efficient electrocatalytic oxygen evolution[J]. Angew. Chem. Int. Ed., 2021,60(21):11841-11846. doi: 10.1002/anie.202103058

    16. [16]

      Huang W G, Liu Q F, Zhou Z W, Li Y S, Ling Y J, Wang Y, Tu Y C, Wang B B, Zhou X H, Deng D H, Yang B, Yang Y, Liu Z, Bao X H, Yang F. Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction[J]. Nat. Commun., 2020,11(1)2312. doi: 10.1038/s41467-020-15965-8

    17. [17]

      Shi H, Zhou Y T, Yao R Q, Wan W B, Ge X, Zhang W, Wen Z, Lang X Y, Zheng W T, Jiang Q. Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting[J]. Nat. Commun., 2020,11(1)2940. doi: 10.1038/s41467-020-16769-6

    18. [18]

      SHENG Z M, TAO Y R, XU L L, YANG P, WANG W X, WU X C. CoFe-P catalyst prepared by a facile electrodeposition for high-efficient oxygen evolution reaction[J]. Chinese J. Inorg. Chem., 2023,39(7):1325-1337.  

    19. [19]

      QIN C L, CHEN S, GOMMA H, SHENASHEN M A, EI-SAFTY S A, LIU Q, AN C H, LIU X J, DENG Q B, HU N. Regulating HER and OER performances of 2D materials by the external physical fields[J]. Acta Phys.-Chim. Sin., 2024,40(9)2307059.

    20. [20]

      Zheng X B, Yang J R, Xu Z F, Wang Q S, Wu J B, Zhang E H, Dou S X, Sun W P, Wang D S, Li Y D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2022,61(32)e202205946. doi: 10.1002/anie.202205946

    21. [21]

      Zhao G Q, Li P, Cheng N Y, Dou S X, Sun W P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing iridium(Ⅴ), and beyond[J]. Adv. Mater., 2020,32(24)2000872. doi: 10.1002/adma.202000872

    22. [22]

      Li S, Chen B B, Wang Y, Ye M Y, van Aken P A, Cheng C, Thomas A. Oxygen-evolving catalytic atoms on metal carbides[J]. Nat. Mater., 2021,20(9):1240-1247. doi: 10.1038/s41563-021-01006-2

    23. [23]

      Tian X L, Zhao X, Su Y Q, Wang L J, Wang H M, Dang D, Chi B, Liu H F, Hensen E J M, Lou X W, Xia B Y. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells[J]. Science, 2019,366(6467):850-856. doi: 10.1126/science.aaw7493

    24. [24]

      Zhang Q, Lian K, Liu Q, Qi G C, Zhang S S, Luo J, Liu X J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries[J]. J. Colloid Interface Sci., 2023,646:844-854. doi: 10.1016/j.jcis.2023.05.074

    25. [25]

      Yu L, Deng D H, Bao X H. Chain mail for catalysts[J]. Angew. Chem. Int. Ed., 2020,59(36):15294-15297. doi: 10.1002/anie.202007604

    26. [26]

      Li M, Li Y B, Cu Q, Li Y, Li H Y, Li Z H, Li M, Liao H, Li G, Li G R, Wang X. Hollow and hierarchical CuCo-LDH nanocatalyst for boosting sulfur electrochemistry in Li-S batteries[J]. Mater. Adv., 2023,40032.

    27. [27]

      Li X R, Li Y P, Wang C L, Xue H G, Pang H, Xu Q. A 3D hierarchical electrocatalyst: Core-shell Cu@Cu(OH)2 nanorods/MOF octahedra supported on N-doped carbon for oxygen evolution reaction[J]. Nano Res., 2023,16(5):8012-8017. doi: 10.1007/s12274-023-5389-4

    28. [28]

      Lee J, Suh Y, Dubey P P, Barako M T, Won Y. Capillary wicking in hierarchically textured copper nanowire arrays[J]. ACS Appl. Mate. Interfaces, 2019,11(1):1546-1554. doi: 10.1021/acsami.8b14955

    29. [29]

      Yan D F, Xia C F, Zhang W J, Hu Q, He C X, Xia B Y, Wang S Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction[J]. Adv. Energy Mater., 2022,12(45)2202317. doi: 10.1002/aenm.202202317

    30. [30]

      Fan F F, Huang Q L, Rani K K, Peng X L, Liu X T, Wang L M, Yang Z Y, Huang D J, Devasenathipathy R, Chen D H, Fan Y H, Chen W. Interface and doping engineering of Co-based electrocatalysts for enhanced oxygen reduction and evolution reactions[J]. Chem. Eng. J., 2023,470144380. doi: 10.1016/j.cej.2023.144380

    31. [31]

      Nam D H, Bushuyev O S, Li J, De Luna P, Seifitokaldani A, Dinh C T, de Arquer F P G, Wang Y H, Liang Z Q, Proppe A H, Tan C S, Todorović P, Shekhah O, Gabardo C M, Jo J W, Choi J M, Choi M J, Baek S W, Kim J, Sinton D, Kelley S O, Eddaoudi M, Sargent E H. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction[J]. J. Am. Chem. Soc., 2018,140(36):11378-11386. doi: 10.1021/jacs.8b06407

    32. [32]

      Liu X G, Geng P B, Zhang G X, Zhang Y, Dou F, Pang H. Synthesis of 2D Co-MOF nanosheets and low-temperature calcination activation for lithium-ion batteries[J]. Inorg. Chem., 2023,62(16):6527-6536. doi: 10.1021/acs.inorgchem.3c00783

    33. [33]

      Gao Y D, Qiu Z M, Lu Y, Zhou H J, Zhu R M, Liu Z, Pang H. Rational design and general synthesis of high-entropy metallic ammonium phosphate superstructures assembled by nanosheets[J]. Inorg. Chem., 2023,62(8):3669-3678. doi: 10.1021/acs.inorgchem.3c00038

    34. [34]

      Yun Q B, Lu Q P, Zhang X, Tan C L, Zhang H. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion[J]. Angew. Chem. Int. Ed., 2018,57(3):626-646. doi: 10.1002/anie.201706426

    35. [35]

      Lv J W, Gao X Q, Han B, Zhu Y F, Hou K, Tang Z Y. Self-assembled inorganic chiral superstructures[J]. Nat. Rev. Chem., 2022,6(2):125-145. doi: 10.1038/s41570-021-00350-w

    36. [36]

      Zheng S S, Zheng Y, Xue H G, Pang H. Ultrathin nickel terephthalate nanosheet three-dimensional aggregates with disordered layers for highly efficient overall urea electrolysis[J]. Chem. Eng. J., 2020,395125166. doi: 10.1016/j.cej.2020.125166

    37. [37]

      Zeng G, He Y C, Ma D D, Luo S W, Zhou S H, Cao C S, Li X F, Wu X T, Liao H G, Zhu Q L. Reconstruction of Ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate[J]. Adv. Funct. Mater., 2022,32(30)2201125. doi: 10.1002/adfm.202201125

    38. [38]

      Li L H, Liu X J, Wang J M, Liu R, Liu Y R, Wang C L, Yang W X, Feng X, Wang B. Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn-air batteries[J]. J. Mater. Chem. A, 2022,10(36):18723-18729. doi: 10.1039/D2TA05777H

    39. [39]

      Xiong X L, You C, Liu Z A, Asiri A M, Sun X P. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity[J]. ACS Sustain. Chem. Eng., 2018,6:2883-2887. doi: 10.1021/acssuschemeng.7b03752

    40. [40]

      Wang Y, Wang S Q, Liu D Y, Zhou L, Du R, Li T T, Miao T T, Qian J J, Hu Y, Huang S M. Normal-pulse-voltage-assisted in situ fabrication of graphene-wrapped MOF-derived CuO nanoflowers for water oxidation[J]. Chem. Commun., 2020,56:8750-8753. doi: 10.1039/D0CC03132A

    41. [41]

      Usman A, Xiong F, Aftab W, Qin M L, Zou R Q. Emerging Solid-to-solid phase-change materials for thermal-energy harvesting, Storage, and Utilization[J]. Adv. Mater., 2022,34(41)2202457. doi: 10.1002/adma.202202457

    42. [42]

      Zheng X B, Li B B, Wang Q S, Wang D S, Li Y D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis[J]. Nano Res., 2022,15(9):7806-7839. doi: 10.1007/s12274-022-4429-9

    43. [43]

      Sun Y Y, Ji H Q, Sun Y J, Zhang G X, Zhou H J, Cao S, Liu S X, Zhang L, Li W T, Zhu X W, Pang H. Synergistic effect of oxygen vacancy and high porosity of nano MIL-125(Ti) for enhanced photocatalytic nitrogen fixation[J]. Angew. Chem. Int. Ed., 2023e202316973.

    44. [44]

      Zhu R M, Ding J W, Yang J P, Pang H, Xu Q, Zhang D L, Braunstein P. Quasi-ZIF-67 for boosted oxygen evolution reaction catalytic activity via a low temperature calcination[J]. ACS Appl. Mater. Interfaces, 2020,12(22):25037-25041. doi: 10.1021/acsami.0c05450

    45. [45]

      Ding Y R, Wang Z Y, Liang Z J, Sun X P, Sun Z H, Zhao Y X, Liu J L, Wang C Y, Zeng Z Y, Fu L, Zeng M Q, Tang L. A monolayer high-entropy layered hydroxide frame for efficient oxygen evolution reaction[J]. Adv. Mater., 20232302860. doi: 10.1002/adma.202302860

    46. [46]

      Tabti H A, Adjdir M, Ammam A, Mdjahed B, Guezzen B, Ramdani A, Benddedouche C K, Bouchikhi N, Chami N. Facile synthesis of Cu-LDH with different Cu/Al molar ratios: Application as antibacterial inhibitors[J]. Res. Chem. Intermed., 2020,46(12):5377-5390. doi: 10.1007/s11164-020-04268-8

    47. [47]

      Park S H, Kim H J. Unidirectionally aligned copper hydroxide crystalline nanorods from two-dimensional copper hydroxy nitrate[J]. J. Am. Chem. Soc., 2004,126(44):14368-14369. doi: 10.1021/ja047425w

    48. [48]

      Saghir S, Fu E F, Xiao Z G. Synthesis of CoCu-LDH nanosheets derived from zeolitic imidazole framework-67 (ZIF-67) as an efficient adsorbent for azo dye from waste water[J]. Microporous Mesoporous Mat., 2020,297110010. doi: 10.1016/j.micromeso.2020.110010

    49. [49]

      Gholinejad M, Naghshbandi Z, Sansano J M. Co/Cu bimetallic ZIF as new heterogeneous catalyst for reduction of nitroarenes and dyes[J]. Appl. Organomet. Chem., 2020,34(4)e5522. doi: 10.1002/aoc.5522

    50. [50]

      Wu C H, Xie D G, Mei Y J, Xiu Z F, Poduska K M, Li D C, Xu B, Sun D F. Unveiling the thermolysis natures of ZIF-8 and ZIF-67 by employing in situ structural characterization studies[J]. Phys. Chem. Chem. Phys., 2019,21(32):17571-17577. doi: 10.1039/C9CP02582K

    51. [51]

      Cheng W R, Wu Z P, Luan D Y, Zang S Q, Lou X W. Synergetic cobalt-copper-based bimetal-organic framework nanoboxes toward efficient electrochemical oxygen evolution[J]. Angew. Chem. Int. Ed., 2021,60(50):26397-26402. doi: 10.1002/anie.202112775

    52. [52]

      Li X R, Wang C L, Liu Y Y, Xue H G, Pang H, Xu Q. Cu-alanine complex-derived CuO electrocatalysts with hierarchical nanostructures for efficient oxygen evolution[J]. Chin. Chem. Lett., 2021,32(7):2239-2242. doi: 10.1016/j.cclet.2020.12.037

    53. [53]

      Wu X Y, Jing Q L, Sun F C, Pang H. The synthesis of zeolitic imidazolate framework/prussian blue analogue heterostructure composites and their application in supercapacitors[J]. Inorg. Chem. Front., 2023,10(1):78-84. doi: 10.1039/D2QI01966C

    54. [54]

      Gao G, Zhu Z, Zheng J, Liu Z, Wang Q, Yan Y S. Ultrathin magnetic Mg-Al LDH photocatalyst for enhanced CO2 reduction: Fabrication and mechanism[J]. J. Colloid Interface. Sci., 2019,555:1-10. doi: 10.1016/j.jcis.2019.07.025

    55. [55]

      Ren H, Zhang L Y, An J P, Wang T T, Li L, Si X Y, He L, Wu X T, Wang C G, Su Z M. Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release[J]. Chem. Commun., 2014,50(8):1000-1002. doi: 10.1039/C3CC47666A

    56. [56]

      Yang J, Sun Y X, Chang X J, Zhang Z L, Wang X, Zhou G M, Peng J D. MOF-derived N-doped porous carbons activate peroxomonosulfate to efficiently degrade organic pollutants via non-radical pathways[J]. J. Water Process. Eng., 2023,56104295. doi: 10.1016/j.jwpe.2023.104295

  • 加载中
    1. [1]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    3. [3]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    6. [6]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    12. [12]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    13. [13]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    14. [14]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    15. [15]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    16. [16]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    17. [17]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    18. [18]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    19. [19]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    20. [20]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

Metrics
  • PDF Downloads(0)
  • Abstract views(75)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return