Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram
- Corresponding author: Hongji LI, hongjili@yeah.net Mingji LI, limingji@163.com
Citation: Hao BAI, Weizhi JI, Jinyan CHEN, Hongji LI, Mingji LI. Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Rezaei H, Jouyban A, Rahimpour E. Development of a new method based on gold nanoparticles for determination of uric acid in urine samples[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2022,272120995. doi: 10.1016/j.saa.2022.120995
Siemińska E, Sobczak P, Skibińska N, Sikora J. The differential role of uric acid: The purpose or cause of cardiovascular diseases?[J]. Med. Hypotheses, 2020,142109791. doi: 10.1016/j.mehy.2020.109791
FANG Z L, WANG P, LIU S D, WANG X, NIE Q X, YANG S M, XU W Y, ZHOU M H. Simultaneous detection of dopamine and uric acid based on chiral MOF and acetylene black modified electrode[J]. Chinese J. Inorg. Chem., 2020,36(1):139-147.
Cutler R G, Camandola S, Feldman N H, Yoon J S, Haran J B, Arguelles S, Mattson M P. Uric acid enhances longevity and endurance and protects the brain against ischemia[J]. Neurobiol. Aging, 2019,75:159-168. doi: 10.1016/j.neurobiolaging.2018.10.031
Zhou C B, Gu M J, Yin L, Yin W F, Liu J, Zhu Y Y, Yin K F, Lei C Y, Xu Z, Yang X L. Low serum uric acid levels may be a potential biomarker of poor sleep quality in patients with Parkinson's disease[J]. Sleep Med., 2023,105:9-13. doi: 10.1016/j.sleep.2023.03.011
Lin S, Liu J C, Li W Z, Wang D, Huang Y, Jia C, Li Z W, Murtaza M, Wang H Y, Song J N, Liu Z L, Huang K, Zu D, Lei M, Hong B, Wu H. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces[J]. Nano Lett., 2019,19(10):6853-6861. doi: 10.1021/acs.nanolett.9b02019
Aafria S, Kumari P, Sharma S, Yadav S, Batra B, Rana J S, Sharma M. Electrochemical biosensing of uric acid: A review[J]. Microchem J., 2022,182107945. doi: 10.1016/j.microc.2022.107945
Walcarius A. Mesoporous materials-based electrochemical sensors[J]. Electroanalysis, 2015,27(6):1303-1340. doi: 10.1002/elan.201400628
Delgado-Avilez J, Huerta-Miranda G A, Jaimes-López R, Miranda-Hernández M. Theoretical study of the chemical interactions between carbon fiber ultramicroelectrodes and the dihydroxybenzene isomers for electrochemical sensor understanding[J]. Electrochim. Acta, 2022,402139576. doi: 10.1016/j.electacta.2021.139576
LI K K, WANG S L, LUO R M, MA L, LIU L, WEI P Y, ZHANG Y. Nickel bicarbonate nanoparticles loadded on carbon paper for enzyme-free glucose electrochemical sensor[J]. Chinese J. Inorg. Chem., 2021,37(11):2002-2010. doi: 10.11862/CJIC.2021.239
Hinrichs H, Scholz M, Baum A K, Kam J W Y, Knight R T, Heinze H J. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications[J]. Sci. Rep, 2020,10(1)5218. doi: 10.1038/s41598-020-62154-0
Shao L, Guo Y F, Liu W J, Sun T, Wei D P. A flexible dry electroencephalogram electrode based on graphene materials[J]. Mater. Res. Express, 2019,6(8):085619-085619. doi: 10.1088/2053-1591/ab20a7
Wu S X, He Q Y, Tan C L, Wang Y D, Zhang H. Graphene-based electrochemical sensors[J]. Small, 2013,9(8):1160-1172. doi: 10.1002/smll.201202896
HUANG H P, ZHU J J. Preparation of novel carbon-based nanomaterial of graphene and its applications for electrochemistry[J]. Chinese J. Anal. Chem., 2011,39(7):963-971.
CHEN Z, ZHAI N N, GAO S H, LI M J, LI H J. Preparation of boron-nitrogen co-doped vertical graphene electrode for glucose detection[J]. Chinese J. Inorg. Chem., 2023,39(5):785-793.
Putra B R, Nisa U, Heryanto R, Khalil M, Khoerunnisa F, Ridhova A, Thaha Y N, Marken F, Wahyuni W T. Selective non-enzymatic uric acid sensing in the presence of dopamine: Electropolymerized poly-pyrrole modified with a reduced graphene oxide/PEDOT: PSS composite[J]. Analyst, 2022,147(23):5334-5346. doi: 10.1039/D2AN01463G
Jiang J J, Ding D, Wang J, Lin X Y, Diao G W. Three-dimensional nitrogen-doped graphene-based metal-free electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, uric acid, and acetaminophen[J]. Analyst, 2021,146(3):964-970. doi: 10.1039/D0AN01912G
He W Z, Ye X Y, Cui T H. Flexible electrochemical sensor with graphene and gold nanoparticles to detect dopamine and uric acid[J]. IEEE Sens. J., 2021,21(23):26556-26565. doi: 10.1109/JSEN.2021.3122326
Sun Y X, Li H J, Li C P, Wang L T, Xuan X W, Li M J. Preparation of a Cu/CuO-vertical graphene microelectrode for the simultaneous determination of epinephrine and 2-aminoadenosine[J]. Mater. Today Chem., 2023,33101685. doi: 10.1016/j.mtchem.2023.101685
Wang Z Z, Zhao N, Shen G C, Jiang C P, Liu J Q. MEMS-based flexible wearable tri-polar concentric ring electrode array with self-adhesive graphene gel for EEG monitoring[J]. IEEE Sens. J., 2023,23(3):3137-3146. doi: 10.1109/JSEN.2022.3230679
Li Z, Guo W, Huang Y Y, Zhu K H, Yi H K, Wu H. On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces[J]. Carbon, 2020,164:164-170. doi: 10.1016/j.carbon.2020.03.058
Du X J, Jiang W C, Zhang Y, Qiu J K, Zhao Y, Tan Q S, Qi S Y, Ye G, Zhang W F, Liu N. Transparent and stretchable graphene electrode by intercalation dopineg for epidermal electrophysiology[J]. ACS Appl. Mater. Interfaces, 2020,12(50):56361-56371. doi: 10.1021/acsami.0c17658
Das P S, Park S H, Baik K Y, Lee J W, Park J Y. Thermally reduced graphene oxide-nylon membrane based epidermal sensor using vacuum filtration for wearable electrophysiological signals and human motion monitoring[J]. Carbon, 2020,158:386-393. doi: 10.1016/j.carbon.2019.11.001
Zhai P F, Xuan X W, Li H J, Li C P, Li P H, Li M J. Boron and nitrogen co-doped vertical graphene electrodes for scalp electroencephalogram recording[J]. Carbon, 2022,189:71-80. doi: 10.1016/j.carbon.2021.12.056
Li P H, Wang C, Li M J, Xuan X W, Zhou B Z, Li H J. Flexible silver/carbon nanotube-graphene oxide-polydimethylsiloxane electrode patch for electroencephalography language[J]. Adv. Intell. Syst., 2023,52300018. doi: 10.1002/aisy.202300018
Ge C, Li H J, Li M J, Li C P, Wu X G, Yang B H. Synthesis of a ZnO nanorod/CVD graphene composite for simultaneous sensing of dihydroxybenzene isomers[J]. Carbon, 2015,95:1-9. doi: 10.1016/j.carbon.2015.08.006
Yuan M J, Guo X T, Pang H. Derivatives (Cu/CuO, Cu/Cu2O, and CuS) of Cu superstructures reduced by biomass reductants[J]. Mater. Today Chem., 2021,21100519. doi: 10.1016/j.mtchem.2021.100519
Ramos M K, Zarbin A J G. Graphene/copper oxide nanoparticles thin films as precursor for graphene/copper hexacyanoferrate nanocomposites[J]. Appl. Surf. Sci., 2020,515146000. doi: 10.1016/j.apsusc.2020.146000
Oliveira P R, Kalinke C, Mangrich A S, Marcolino-Junior L H, Bergamini M F. Copper hexacyanoferrate nanoparticles supported on biochar for amperometric determination of isoniazid[J]. Electrochim. Acta, 2018,285:373-380. doi: 10.1016/j.electacta.2018.08.004
Sharma M K, Aggarwal S K. Simultaneous formation of Prussian blue and copper hexacyanoferrate from a solution of Cu2+ and K3[Fe(CN)6] in presence of HAuCl4[J]. J. Electroanal. Chem., 2013,705:64-67. doi: 10.1016/j.jelechem.2013.07.023
Randles J E B. A cathode ray polarograph. Part Ⅱ: The current- voltage curves[J]. Trans. Faraday Soc., 1948,44:327-338. doi: 10.1039/TF9484400327
Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem. Interfacial Electrochem., 1979,101(1):19-28. doi: 10.1016/S0022-0728(79)80075-3
Iranmanesh T, Foroughi M M, Jahani S, Zandi M S, Nadiki H H. Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen[J]. Talanta, 2020,207120318. doi: 10.1016/j.talanta.2019.120318
Lavanya N, Fazio E, Neri F, Bonavita A, Leonardi S G, Neri G, Sekar C. Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode[J]. Sens. Actuators B-Chem., 2015,221:1412-1422. doi: 10.1016/j.snb.2015.08.020
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Hongyao Li , Youyan Liu , Luwei Dai , Min Yang , Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Di Yang , Jiayi Wei , Hong Zhai , Xin Wang , Taiming Sun , Haole Song , Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
(a, b, e, f, i, j) Time-domain (VEEG: electroencephalogram potential) and (c, d, g, h, k, l) frequency-domain spectra.