Citation: Xinpeng LIU, Liuyang ZHAO, Hongyi LI, Yatu CHEN, Aimin WU, Aikui LI, Hao HUANG. Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488 shu

Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material

Figures(8)

  • To solve the bottleneck problem of lattice oxygen precipitation during the cycling process of lithium-rich manganese-based anode materials and the poor cycling performance due to the lithium-rich phase of the poor conductor of electrons, the ultra-wideband semiconductor material Ga2O3 for its in-situ coating modification was adopted. The purpose of the surface modification is to improve its electronic conductivity to increase the multiplicity of performance, and at the same time, the C2/m space group of the Ga2O3 coating layer can both improve the Li+ migration rate and inhibit the Li+ migration rate. It can also inhibit the lattice oxygen precipitation of Li-rich manganese-based materials. A pristine sample of Li-rich manganese-based cathode materials Li1.2Mn0.54Ni0.13Co0.13O2 (P-LRMO) was prepared by co-precipitation method, and in-situ coated with different contents of Ga2O3 by simple wet-chemical method as well as low-temperature calcination method. The results of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) showed that the Ga2O3 coating layer was successfully synthesized on the surface of the pristine sample. The results of electrochemical tests showed that the modified material G3-LRMO with mass fraction of 3% Ga2O3 had the best electrochemical performance, which could reach 270.1 mAh·g-1 in the first cycle of the charge-discharge at 0.1C (25 mA·g-1), and still maintained 127.4 mAh·g-1 at 5C, which was better than 90.7 mAh·g-1 of the unmodified material. G3-LRMO still had a capacity of 190.7 mAh·g-1 after 200 cycles at 1C, and the capacity retention rate increased from 72.9% to 85.6%, which proves that the modification of Ga2O3 coating can improve the cycling stability of lithium-rich manganese-based materials. Moreover, the charge transfer impedance (Rct) of the G3-LRMO material was 107.7 Ω after 100 cycles at 1C, which is much lower than that of the unmodified material (251.5 Ω), indicating that the Ga2O3 coating layer can improve the electron transfer rate of the material.
  • 加载中
    1. [1]

      Ding X, Li Y X, Deng M M, Wang S, Aqsa Y, Hu Q. Cesium doping to improve the electrochemical performance of layered Li1.2Ni0.13Co0.13 Mn0.54O2 cathode material[J]. J. Alloy. Compd., 2019,791:100-108. doi: 10.1016/j.jallcom.2019.03.297

    2. [2]

      Zhao R Q, Wu M M, Jiao P X, Wang X T, Zhu J, Zhao Y, Zhang H T, Zhang K, Li C X, Ma Y F, Chen Y S. A double-layer covered architecture with spinel phase induced by LiPP for Co-free Li-rich cathode with high-rate performance and long lifespan[J]. Nano Res., 2023,16(5):6805-6814. doi: 10.1007/s12274-022-5333-z

    3. [3]

      Freire M, Kosova N V, Jordy C, Chateigner D, Lebedev O I, Maignan A, Pralong V. A new active Li-Mn-O compound for high energy density Li-ion batteries[J]. Nat. Mater., 2015,15(2):173-177.

    4. [4]

      Zhang K, Li B, Zuo Y X, Song J, Shang H F, Ning F H, Xia D G. Voltage decay in layered Li-rich Mn-based cathode materials[J]. Electrochem. Energy Rev., 2019,2(4):606-623. doi: 10.1007/s41918-019-00049-z

    5. [5]

      Li X, Tang M X, Feng X Y, Hung I, Rose A, Chien P H, Gan Z H, Hu Y Y. Lithiation and delithiation dynamics of different Li sites in Li-rich battery cathodes studied by operando nuclear magnetic resonance[J]. Chem. Mater., 2017,29(19):8282-8291. doi: 10.1021/acs.chemmater.7b02589

    6. [6]

      Song J H, Shim J H, Kapylou A, Yeon D H, Lee D H, Kim D H, Parko J H, Kang S H. Suppression of voltage depression in Li-rich layered oxide by introducing GaO4 structural units in the Li2MnO3-like nano-domain[J]. Nano Energy, 2016,30:717-727. doi: 10.1016/j.nanoen.2016.09.028

    7. [7]

      Jia X L, Cheng Y H, Lu Y F, Wei F. Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials[J]. ACS Nano, 2014,8(9):9265-9273. doi: 10.1021/nn5031302

    8. [8]

      Xia Q B, Zhao X F, Xu M Q, Ding Z P, Liu J T, Chen L B, Ivey D G, Wei W F. A Li-rich layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method[J]. J. Mater. Chem. A, 2015,3(7):3995-4003. doi: 10.1039/C4TA05848H

    9. [9]

      Kobayashi G, Irii Y, Matsumoto F, Ito A, Ohsawa Y, Yamamoto S, Cui Y T, Son J Y, Sato Y. Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling[J]. J. Power Sources, 2016,303:250-256. doi: 10.1016/j.jpowsour.2015.11.014

    10. [10]

      Wu F, Wang Z, Su Y F, Yan N, Bao L Y, Chen S. Li[Li0.2Mn0.54 Ni0.13Co0.13]O2-MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. J. Power Sources, 2014,247:20-25. doi: 10.1016/j.jpowsour.2013.08.031

    11. [11]

      HUANG J C, MEI L, MA Z, ZHU X Y, QUAN J B, LI D C. Electrochemical performance of Li-rich layered cathode material 0.6Li[Li1/3Mn2/3]O2·0.4LiNi5/12Mn5/12Co1/6O2 by ZrO2 coating[J]. Chinese J. Inorg. Chem., 2017,33(7):1236-1242.  

    12. [12]

      Hu S J, LI Y, Chen Y H, Peng J M, Zhou T F, Pang W K, Didier C, Peterson V K, Wang H Q, Li Q Y, Guo Z P. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode[J]. Adv. Energy Mater., 2019,9(34)1901795. doi: 10.1002/aenm.201901795

    13. [13]

      Lei Y K, Elias Y, Han Y K, Xiao D D, Lu J, Ni J, Zhang Y C, Zhang C M, Aurbach D, Xiao Q F. Mitigation of oxygen evolution and phase transition of Li-rich Mn-based layered oxide cathodes by coating with oxygen-deficient perovskite compounds[J]. ACS Appl. Mater., 2022,14(44):49709-49718. doi: 10.1021/acsami.2c12739

    14. [14]

      Seteni B, Rapulenyane N, Ngila J C, Mpelane S, Luo H Z. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries[J]. J. Power Sources, 2017,353:210-220. doi: 10.1016/j.jpowsour.2017.04.008

    15. [15]

      Galazka Z. β-Ga2O3 for wide-bandgap electronics and optoelectronics[J]. Semicond. Sci. Technol., 2018,33(11)113001. doi: 10.1088/1361-6641/aadf78

    16. [16]

      You D T, Xu C X, Zhao J, Zhang W, Qin F F, Chen J P, Shi Z L. Vertically aligned ZnO/Ga2O3 core/shell nanowire arrays as self-driven superior sensitivity solar-blind photodetectors[J]. J. Mater. Chem. C, 2019,7(10):3056-3063. doi: 10.1039/C9TC00134D

    17. [17]

      JIA X P, NING P F, YANG L F, LI X J, NIU P J. Research on the simulation of ultra-wide band gap semiconductor α-Ga2O3 Schottky diode[J]. Chinese Journal of Electron Devices, 2022,45(4):855-859.  

    18. [18]

      Pye C C, Hendsbee A D, Nizio K D. The thermal decomposition of gallium nitrate hydrate, Ga(NO3)3·9H2O[J]. Polyhedron, 2021,197115040. doi: 10.1016/j.poly.2021.115040

    19. [19]

      Winkler N, Wibowo R A, Kautek W, Ligorio G, List-Kratochvil E J W, Dimopoulos T. Nanocrystalline Ga2O3 films deposited by spray pyrolysis from water-based solutions on glass and TCO substrates[J]. J. Mater. Chem. C, 2019,7(1):69-77. doi: 10.1039/C8TC04157A

    20. [20]

      Cui C Y, Fan X L, Zhou X Q, Chen J, Wang Q C, Ma L, Yang C Y, Hu E Y, Yang X Q, Wang C S. Structure and interface design enable stable Li-rich cathode[J]. J. Am. Chem. Soc., 2020,142(19):8918-8927. doi: 10.1021/jacs.0c02302

    21. [21]

      Ramakrishnan S, Park B, Wu J, Yang W L, McClosekey B. Extended interfacial stability through simple acid rinsing in a Li-rich oxide cathode material[J]. J. Am. Chem. Soc., 2020,142(18):8522-8531. doi: 10.1021/jacs.0c02859

    22. [22]

      Ni S B, Chen Q C, Liu J L, Yang S Y, Li T, Yang X L, Zhao J B. New insights into the Li-storage mechanism in α-Ga2O3 anode and the optimized electrode design[J]. J. Power Sources, 2019,433126681. doi: 10.1016/j.jpowsour.2019.05.087

    23. [23]

      Dong S D, Zhou Y, Hai C X, Zeng J B, SunY X, Ma Y F, Shen Y, Li X, Ren X F, Chao S, Sun C, Zhang G T, Wu Z W. Enhanced cathode performance: Mixed Al2O3 and LiAlO2 coating of Li1.2Ni0.13Co0.13 Mn0.54O2[J]. ACS Appl. Mater., 2020,12(34):38153-38162. doi: 10.1021/acsami.0c10459

    24. [24]

      Wang Y Y, Yu W H, Zhao L Y, Li H Y, Liu X P, Wu A M, Li A K, Dong X F, Huang H. CePO4/spinel dual encapsulating on Li-rich Mn-based cathode with novel cycling stability[J]. J. Alloy. Compd., 2023,953170050. doi: 10.1016/j.jallcom.2023.170050

    25. [25]

      Wen X F, Liang K, Tian L Y, Shi K Y, Zheng J S. Al2O3 coating on Li1.256Ni0.198Co0.082Mn0.689O2.25 with spinel-structure interface layer for superior performance lithium ion batteries[J]. Electrochim. Acta, 2018,260:549-556. doi: 10.1016/j.electacta.2017.12.120

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(0)
  • Abstract views(141)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return