Citation: Shuanglin TIAN, Tinghong GAO, Yutao LIU, Qian CHEN, Quan XIE, Qingquan XIAO, Yongchao LIANG. First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482 shu

First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN

  • Corresponding author: Tinghong GAO, gaotinghong@sina.com
  • Received Date: 21 December 2023
    Revised Date: 31 March 2024

Figures(9)

  • The adsorption behaviors of intrinsic graphene-like GaN (g-GaN) and transition metal (TM) atom-doped g-GaN on Cl2 and CO gas molecules were systematically investigated using first-principles calculations based on density functional theory. The results show that the adsorption of both Cl2 and CO on the intrinsic g-GaN was physisorbed, and since the adsorption energies of both systems were positive, it indicates that the systems are unstable. On the contrary, the adsorption energies of Cl2 and CO upon adsorption on Fe- and Co-doped g-GaN were negative and small, and the adsorption system is stable. By analyzing the properties of the density of states, charge density difference, and energy band structure, it can be concluded that the introduction of transition metal atoms can effectively enhance the interaction between gas molecules and g-GaN.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    2. [2]

      Demon S Z N, Kamisan A I, Abdullah N, Noor S A M, Khim O K, Kasim N A M, Yahya M Z A, Manaf N A A, Azmi A F M, Halim N A. Graphene-based materials in gas sensor applications: A review[J]. Sensor Mater., 2020,32(2):759-777. doi: 10.18494/SAM.2020.2492

    3. [3]

      Zhou J, Tang R Z, Wang X Y, Zhang W Z, Zhuang X D, Zhang F. BN-heteroacene-cored luminogens with dual channel detection for fluoride anions[J]. J. Mater. Chem. C, 2016,4(6):1159-1164. doi: 10.1039/C5TC04139B

    4. [4]

      Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H. Evidence of silicene in honeycomb structures of silicon on Ag(111)[J]. Nano Lett., 2012,12(7):3507-3511. doi: 10.1021/nl301047g

    5. [5]

      Kazemi A, Rodner M, Fadavieslam M R, Kaushik P D, Ivanov I G, E riksson J, Syvjrvi M, Yakimova R, Yazdi G R. The effect of Cl- and N-doped MoS2 and WS2 coated on epitaxial graphene in gas-sensing applications[J]. Surf. Interfaces, 2021,25101200. doi: 10.1016/j.surfin.2021.101200

    6. [6]

      Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nat. Photonics, 2016,10(4):216-226. doi: 10.1038/nphoton.2015.282

    7. [7]

      Pulkin A, Yazyev O V. Controlling the quantum spin hall edge states in two-dimensional transition metal dichalcogenides[J]. J. Phys. Chem. Lett., 2020,11(17):6964-6969. doi: 10.1021/acs.jpclett.0c00859

    8. [8]

      Goel N, Kumar M. Recent advances in ultrathin 2D hexagonal boron nitride based gas sensors[J]. J. Mater. Chem. C, 2021,9(5):1537-1549. doi: 10.1039/D0TC05855F

    9. [9]

      Suvansinpan N, Hussain F, Zhang G, Chiu C H, Cai Y, Zhang Y W. Substitutionally doped phosphorene: Electronic properties and gas sensing[J]. Nanotechnology, 2016,27(6)065708. doi: 10.1088/0957-4484/27/6/065708

    10. [10]

      Wang S K, Ren C D, Tian H Y, Yu J, Sun M L. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study[J]. Phys. Chem. Chem. Phys., 2018,20(19):13394-13399. doi: 10.1039/C8CP00808F

    11. [11]

      Cho A J, Kwon J Y. Hexagonal boron nitride for surface passivation of two-dimensional van der Waals heterojunction solar cells[J]. ACS Appl. Mater. Interfaces, 2019,11(43):39765-39771. doi: 10.1021/acsami.9b11219

    12. [12]

      Zhang M, Biesold G M, Lin Z Q. A multifunctional 2D black phosphorene-based platform for improved photovoltaics[J]. Chem. Soc. Rev., 2021,50(23):13346-13371. doi: 10.1039/D1CS00847A

    13. [13]

      He J J, Li S. Two-dimensional Janus transition-metal dichalcogenides with intrinsic ferromagnetism and half-metallicity[J]. Comput. Mater. Sci., 2018,152:151-157. doi: 10.1016/j.commatsci.2018.05.049

    14. [14]

      Li D W, Sun S, Xiao Z Y, Song J F, Shao D F, Tsymbal E Y, Ducharme S, Hong X. Giant Transport anisotropy in ReS2 revealed via nanoscale conducting-path control[J]. Phys. Rev. Lett., 2021,127(13)136803. doi: 10.1103/PhysRevLett.127.136803

    15. [15]

      Al Balushi Z Y, Wang K, Ghosh R K, Vila R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A. Two-dimensional gallium nitride realized via graphene encapsulation[J]. Nat. Mater., 2016,15(11):1166-1171. doi: 10.1038/nmat4742

    16. [16]

      ZHAI H Y, ZOU Z L, LI M Y, ZHANG L Y, ZHOU W J. Synthesis of boron and phosphorus co-doped Fe-Co bimetallic materials for electrocatalytic oxygen evolution[J]. Chinese J. Inorg. Chem., 2023,39(4):627-636.  

    17. [17]

      BAI Y Y, WANG C S, LI J H, LIU X X, CHU X F, LIANG S M. La3+ doped CaFe2O4 materials: Preparation and detection of ultra low concentrations of formaldehyde at room temperature[J]. Chinese J. Inorg. Chem., 2023,39(10):1898-1904. doi: 10.11862/CJIC.2023.160

    18. [18]

      Xiao Z Z, Xu Z Y, Wang J M. Solution phase synthesis of bimetallic (Sn/Ni) doped porous silicon microspheres with electrochemical lithium storage[J]. Chinese J. Inorg. Chem., 2023,39(6):1031-1041.

    19. [19]

      DUAN W Y, CHENG Y H, HU J S, MA X G, PEI L. Schottky barrier of blue phosphorus/graphene heterostructure regulated by the adsorption of oxygen atoms[J]. Chinese J. Inorg. Chem., 2023,39(10):1980-1990.  

    20. [20]

      CHEN R, WANG Y F, WANG Y X, LIANG Q, XIE Q. First-principles study of transition metal atoms X (X=Mn, Tc, Re) doped two- dimensional WS2 materials[J]. Acta Phys. Sin., 2021,70(12)127301.  

    21. [21]

      Zhou Q X, Ju W W, Su X Y, Yong Y L, Li X H. Adsorption behavior of SO2 on vacancy-defected graphene: A DFT study[J]. J. Phys. Chem. Solids, 2017,109:40-45. doi: 10.1016/j.jpcs.2017.05.007

    22. [22]

      Cui Z, Wang X, Ding Y C, Li E L, Bai K F, Zheng J S, Liu T. Adsorption of CO, NH3, NO, and NO2 on pristine and defective g-GaN: Improved gas sensing and functionalization[J]. Appl. Surf. Sci., 2020,530147275. doi: 10.1016/j.apsusc.2020.147275

    23. [23]

      Chen G X, Li H F, Wang D D, Li S Q, Fan X B, Zhang J M. Adsorption of toxic gas molecules on pristine and transition metal doped hexagonal GaN monolayer: A first-principles study[J]. Vacuum, 2019,165:35-45. doi: 10.1016/j.vacuum.2019.04.001

    24. [24]

      Roohi H, Ardehjani N A. Transition metals (Fe, Ni and Zn) doped GaN nanosheets and their adsorption performance towards SO2 and NO2 toxic gases: A DFT-D approach[J]. Mater. Chem. Phys., 2022,291126713. doi: 10.1016/j.matchemphys.2022.126713

    25. [25]

      Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59(3):1758-1775. doi: 10.1103/PhysRevB.59.1758

    26. [26]

      Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Phys. Rev. B, 1994,49(20):14251-14269. doi: 10.1103/PhysRevB.49.14251

    27. [27]

      Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B, 1993,47(1):558-561. doi: 10.1103/PhysRevB.47.558

    28. [28]

      Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996,6(1):15-50. doi: 10.1016/0927-0256(96)00008-0

    29. [29]

      Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169

    30. [30]

      Blochl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50(24):17953-17979. doi: 10.1103/PhysRevB.50.17953

    31. [31]

      Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    32. [32]

      Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J. Chem. Phys., 2010,132(15)154104. doi: 10.1063/1.3382344

    33. [33]

      Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188

    34. [34]

      WU Y Y, LI W, REN Q Y, LI J Z, XU W, XU J. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2[J]. Acta Phys. Sin., 2024,73(7)073101.  

    35. [35]

      Ganji M D, Sharifi N, Ardjmand M, Ahangari M G. Pt-decorated graphene as superior media for H2S adsorption: A first-principles study[J]. Appl. Surf. Sci., 2012,261:697-704. doi: 10.1016/j.apsusc.2012.08.083

    36. [36]

      Zaboli M, Raissi H. DFT and MD study of adsorption sensitivity of aluminium phosphide nanotube towards some air pollutant gas molecules[J]. Mol. Simul., 2017,43(9):675-690. doi: 10.1080/08927022.2017.1295453

    37. [37]

      Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias[J]. J. Phys.-Condens. Matter, 2009,21(8)084204. doi: 10.1088/0953-8984/21/8/084204

    38. [38]

      Chen G X, Li H F, Yang X, Wen J Q, Pang Q, Zhang J M. Adsorption of 3d transition metal atoms on graphene-like gallium nitride monolayer: A first-principles study[J]. Superlattices Microstruct., 2018,115:108-115. doi: 10.1016/j.spmi.2018.01.023

    39. [39]

      Shu H B, Zhao M L, Sun M L. Theoretical study of GaN/BP van der Waals nanocomposites with strain-enhanced electronic and optical properties for optoelectronic applications[J]. ACS Appl. Nano Mater., 2019,2(10):6482-6491. doi: 10.1021/acsanm.9b01422

    40. [40]

      Gui Y A, Hu X Y, Zhu S P, Chen X P. A DFT study of transition metal (Ag, Au, Co) modified SnS2 monolayer for the detection and adsorption of the representative gases (NH3, Cl2, and C2H2) in greenhouses[J]. Mater. Today Commun., 2022,33104618. doi: 10.1016/j.mtcomm.2022.104618

    41. [41]

      Roohi H, Ardehjani N A. Adsorption behaviour of NO, NO2, CO and CS2 molecules on the surface of carbon-doped gallium nitride nanosheet: A DFT study[J]. Surf. Sci., 2022,717121988. doi: 10.1016/j.susc.2021.121988

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    5. [5]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    6. [6]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    7. [7]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    8. [8]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    11. [11]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    12. [12]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    13. [13]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    16. [16]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    17. [17]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    18. [18]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    19. [19]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    20. [20]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

Metrics
  • PDF Downloads(0)
  • Abstract views(67)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return