Citation: Siyu HOU, Weiyao LI, Jiadong LIU, Fei WANG, Wensi LIU, Jing YANG, Ying ZHANG. Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469 shu

Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method

  • Corresponding author: Ying ZHANG, zhangying@syphu.edu.cn
  • Received Date: 14 December 2023
    Revised Date: 26 June 2024

Figures(4)

  • Iron oxide particles with a size of 7 nm were prepared by the oxidation co-precipitation method using Fe2+ as an iron source, 0.4% H2O2 as an oxidant, and NaOH as a precipitator. This experiment further simulated tumor starvation therapy in vitor: in 5 mL (10 μg·mL-1) of glucose oxidase and 15 mL (5 mg·mL-1) of glucose solution system, to explore the optimal conditions for the catalytic performance of catalase (CAT)-like and peroxidase (POD)-like of nano ferrous oxide. The results showed that under 1 mg·mL-1, at pH=5.0, the CAT-like activity of nano Fe3O4 can promote an increase in the reaction rate and limit of glucose oxidation reaction; at pH=5.0, the POD-like activity of nano iron oxide was better. It can catalyze hydrogen peroxide to produce reactive oxygen species with high efficiency.
  • 加载中
    1. [1]

      Mansour S F, Hemeda O M, Abdo M A, Nada W A. Improvement on the magnetic and dielectric of behaviour hard/soft ferrite nanocomposites[J]. J. Mol. Struct., 2018,1152:207-214. doi: 10.1016/j.molstruc.2017.09.089

    2. [2]

      Das Talukdar A, Sarker S D, Patra J K. Advances in nanotechnology-based drug delivery systems. Amsterdam: Elsevier, 2022: 585-604

    3. [3]

      GAO M, ZHANG T Q, LI J J, HU J Q, JIN M Y, ZHAO Y, WANG H Y, XUE C G. Preparation of magnetic chitosan/Fe3O4/graphene oxide adsorbent, and its polydye adsorption properties[J]. Chinese J. Inorg. Chem., 2019,39(4):723-734.  

    4. [4]

      Vargason A M, Anselmo A C, Mitragotri S. The evolution of commercial drug delivery technologies[J]. Nat. Biomed. Eng., 2021,5:951-967. doi: 10.1038/s41551-021-00698-w

    5. [5]

      Dong H J, Du W, Dong J, Che R C, Kong F, Cheng W L, Ma M, Gu N, Zhang Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions[J]. Nat. Commun., 2022,13:133-139.

    6. [6]

      Zhou Y F, Liu C, Yu Y, Yin M, Sun J L, Huang J, Chen N, Wang H, Fan C H, Song H Y. An organelle-specific nanozyme for diabetes care in genetically diet-induced models[J]. Adv. Mater., 2020,32:221-234.

    7. [7]

      Dong H J, Fan Y Y, Zhang W, Gu N, Zhang Y. Catalytic mechanism and theoretical model of nano-enzymes[J]. Bioconjugate Chem., 2019,30:1273-1296. doi: 10.1021/acs.bioconjchem.9b00171

    8. [8]

      LI J Y, Tong D D, LIN J S. Current status of cancer starvation therapy[J]. Journal of Zhejiang University(Medical Sciences), 2021,4:36-43.

    9. [9]

      Scott E C, Baines A C, Gong Y T, Moore R, Pamuk G E, Saber H, Subedee A, Thompson M D, Xiao W M, Pazdur R, Rao V A, Schneider J, Beaver J A. Trends in the approval of cancer therapies by the FDA in the twenty-first century[J]. Nature Reviews Drug Discovery, 2023,22:625-640. doi: 10.1038/s41573-023-00723-4

    10. [10]

      Chen L, Huang J H, Li X T, Huang M T, Zeng S T, Zheng J Y, Peng S Y, Li S Y. Progress of nanomaterials in photodynamic therapy of tumor[J]. Front. Bioeng. Biotechnol., 2022,10920162. doi: 10.3389/fbioe.2022.920162

    11. [11]

      Zhang R Y, Zhang C, Chen C, Tian M G, Chau J H C, Li Z, Yang Y Z, Li X Q, Tang B Z. Autophagy-activated photosensitizer promoting cell mortality in cancer starvation therapy[J]. Adv. Sci., 2023,102301295.

    12. [12]

      ZHANG H J. Preparation and Gas Sensitive Properties of Iron based Nano-oxides and Composites. Harbin: Harbin University of Science and Technology, 2019: 9-16

    13. [13]

      ZHANG S H, YANG H R, ZHAO Y, LI Y Y, ZHAO X, WANG H, JI T J, NIE G J. Research progress on the nanodrug mediated regulation of tumor fibroblast-like cells for tumor therapy[J]. Chin. Sci. Bull., 2023,68(32):4373-4382.  

    14. [14]

      Cheng H C, Qiu Y J, XU Y, Chen L, Ma K L, Tao M Y, Frankiw L, Yin H L, Xie E R, Pan X L, Du J, Wang Z, Zhu W J, Chen L, Zhang L J, Li G D. Extracellular acidosis restricts one-carbon metabolism and preserves T cell stemness[J]. Nat. Metab., 2023,5:314-330.

    15. [15]

      CHEN Y. Application of iron metal oxygen clusters in radiodynamics/immunotherapy. Shanghai: Shanghai Normal University, 2022: 9-11

    16. [16]

      GAO M Y, ZHAO T T, JIANG Y, MA J Y, HAN Y H, LI Y Y, WANG T. pH-responsive/H2O2 self-supplying metal peroxides for tumor chemodynamic therapy[J]. Materials China, 2023,42(10):779-786.  

    17. [17]

      Zhao P Y, Li H Y, Bu W B. A forward vision for chemodynamic therapy: Issues and opportunities[J]. Angew. Chem. Int. Ed., 2023,62e202210415.

    18. [18]

      LIANG R S, YAN Y F, CHEN J H, ZHENG Z K, YAN Z C, LI X Y. Antitumor mechanism of reactive oxygen species and its application in tumor therapy[J]. Chemistry of Life, 2023,43(4):501-509.  

    19. [19]

      ZHANG K, WU Y, ZHOU Y X. Mechanism of iron death in tumor[J]. Jiangsu. Medical Journal, 2022,48(6):629-633.  

    20. [20]

      ZHANG T T. Multifunctional nanoparticle: Combination of photothermal effect and reactive oxygen species generation for dual-modality cancer therapy and heterogenous expression of LOX family proteins. Jinan: Shandong University, 2021: 10-12

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    6. [6]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(3)
  • Abstract views(137)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return