Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis
- Corresponding author: Weixia DONG, weixia_dong@sina.com
Citation: Zhiwen HU, Weixia DONG, Qifu BAO, Ping LI. Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Liu D M, Jin C C, Shan F K. Synthesizing BaTiO3 nanostructures to explore morphological influence, kinetics, and mechanism of piezocatalytic dye degradation[J]. ACS Appl. Mater. Interfaces, 2020,12(15):17443-17451. doi: 10.1021/acsami.9b23351
Ray S K, Cho J W, Jin H. A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment[J]. J. Environ. Manage., 2021,290(1)112679.
Wu J, Qin N, Bao D H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration[J]. Nano Energy, 2018,45:44-51. doi: 10.1016/j.nanoen.2017.12.034
Jin C C, Liu D M, Hu J. The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater[J]. Nano Energy, 2019,59:372-379. doi: 10.1016/j.nanoen.2019.02.047
Yuan B W, Jiang W, Qin N. Enhanced piezocatalytic performance of (Ba, Sr)TiO3 nanowires to degrade organic pollutants[J]. ACS Appl. Nano Mater., 2018,1(9):5119-5127. doi: 10.1021/acsanm.8b01206
Xu S Y, Guo L M, Sun Q J. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures[J]. Adv. Funct. Mater., 2019,29(13)1808737. doi: 10.1002/adfm.201808737
DING H Y, SHANG S M, QIN G M. Submicron tetragonal barium titanate: Preparation by solid state reaction at low temperature and crystal phase control[J]. Chinese J. Inorg. Chem., 2018,34(8):1483-1488.
Cheng Y, Liang K X, Chen Y F. Effect of molecular structure changes during starch gelatinization on its rheological and 3D printing properties[J]. Food Hydrocolloids, 2023,137108364. doi: 10.1016/j.foodhyd.2022.108364
Gao R J, Guo W J, Zhang Y D. Enhancement of gelatinization on electrochemical performance of corn starch-based porous carbon as electrode material in supercapacitors[J]. Diam. Relat. Mat., 2024,141110598. doi: 10.1016/j.diamond.2023.110598
Zhang C H, Wang Y X, Zheng J X. Improved supercapacitor performance of α-starch-derived porous carbon through gelatinization[J]. J. Power Sources, 2022,521230942. doi: 10.1016/j.jpowsour.2021.230942
HU Z W, DONG W X, BAO Q F. Preparation and piezocatalytic properties of Rubik's cube-like nano-microstructure BaTiO3[J]. Chinese J. Inorg. Chem., 2023,39(3):475-484.
Fei R, Zhu G G, Zhang W B. In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2-assisted thermal-treatment for efficient selective photocatalytic NO removal[J]. Appl. Catal. B-Environ., 2020,281119481.
Yashika G, Albanesi E A, Walz M V. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films[J]. Thin Solid Films, 2016,612:310-316. doi: 10.1016/j.tsf.2016.05.056
Wang S J, Qu P, Li C. Hydrothermal synthesis of dendritic BaTiO3 ceramic powders and its application in BaTiO3/P(VDF-TrFE) composites[J]. Int. J. Appl. Ceram. Technol., 2017,14(5):969-975. doi: 10.1111/ijac.12716
Wang W, Zhou H X, Yang H. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch[J]. Food Chem., 2017,214:319-327. doi: 10.1016/j.foodchem.2016.07.040
Zhao T T, Zhang H C, Chen F F. Study on structural changes of starches with different amylose content during gelatinization process[J]. Starch-Stärke, 2022,74(7/8)2100269.
Wu J R, Wang W W, Tian Y. Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants[J]. Nano Energy, 2020,77105122. doi: 10.1016/j.nanoen.2020.105122
Xu X L, Wu Z, Xiao L B. Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis[J]. J. Alloy. Compd., 2018,762:915-921. doi: 10.1016/j.jallcom.2018.05.279
Wu J, Xu Q, Lin E Z. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3[J]. ACS Appl. Mater. Interfaces, 2018,10(21):17842-17849. doi: 10.1021/acsami.8b01991
Li Q, Lewis J A. Nanoparticle inks for directed assembly of three-dimensional periodic structures[J]. Adv. Mater., 2003,15(19):1639-1643. doi: 10.1002/adma.200305413
Wang S S, Wu Z, Chen J. Lead-free piezoelectric sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation[J]. Ceram. Int., 2019,45(9):11703-11708. doi: 10.1016/j.ceramint.2019.03.045
You H L, Ma X X, Wu Z. Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro-bi-catalytic dye decomposition of NaNbO3 nanofibers[J]. Nano Energy, 2018,52:351-359. doi: 10.1016/j.nanoen.2018.08.004
Ling J S, Wang K, Wang Z Y. Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration[J]. Ultrason. Sonochem., 2019,61104819.
Lin E Z, Wu J, Qin N. Silver modified barium titanate as a highly efficient piezocatalyst[J]. Catal. Sci. Technol., 2018,8(18):4788-4796. doi: 10.1039/C8CY01127C
Liu Q F, Ma J J, Sharma M. Photocatalytic, piezocatalytic, and piezo-photocatalytic effects in ferroelectric (Ba0.875Ca0.125)(Ti0.95Sn0.05)O3 ceramics[J]. J. Am. Ceram. Soc., 2019,102(10):5807-5817. doi: 10.1111/jace.16502
Yu C Y, Tan M X, Li Y. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering[J]. J. Colloid Interface Sci., 2021,596(29):288-296.
Zhou X F, Wu S H, Li C B. Piezophototronic effect in enhancing charge carrier separation and transfer in ZnO/BaTiO3 heterostructures for high-efficiency catalytic oxidation[J]. Nano Energy, 2019,66104127. doi: 10.1016/j.nanoen.2019.104127
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Lin Ding , Jinpeng Zhang , Junfeng Li , Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Shipeng WANG , Shangyu XIE , Luxian LIANG , Xuehong WANG , Jie WEI , Deqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094
Wei Li , Ze Chang , Meihui Yu , Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005