Citation: Chuanming GUO, Kaiyang ZHANG, Yun WU, Rui YAO, Qiang ZHAO, Jinping LI, Guang LIU. Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459 shu

Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media

Figures(6)

  • MnO2-0.39IrOx (0.39 was the atomic ratio of Ir/Mn) catalysts were successfully prepared by the Adams method and applied for efficient oxygen precipitation reaction (OER) in an acidic medium. During the electrochemical measurement, MnO2-0.39IrOx enabled the water oxidation process to reach a current density of 10 mA·cm-2 with an overpotential of only 253 mV and maintained a stable test for more than 200 h. In addition, the noble metal Ir mass activity of MnO2-0.39IrOx was 61.3 mA·mg-1 at a potential of 1.50 V (vs RHE), which was 35.8 times higher than that of IrO2, increasing the precious metal utilization. Structural analysis revealed that the unique lamellar structure of MnO2-0.39IrOx substantially improves the electrochemically active surface of the catalysts and that there are certain electronic interactions between the Ir sites and the Mn sites. The analysis of the catalytic process showed that the MnO2-0.39IrOx surface showed some reconfiguration phenomenon and the Mn components achieved a continuous optimization of the chemical environment of the Ir sites, which led to the efficient acidic OER performance of the catalyst.
  • 加载中
    1. [1]

      Nishiyama H, Yamada T, Nakabayashi M, Maehara Y, Yamaguchi M, Kuromiya Y, Nagatsuma Y, Tokudome H, Akiyama S, Watanabe T, Narushima R, Okunaka S, Shibata N, Takata T, Hisatomi T, Domen K. Photocatalytic solar hydrogen production from water on a 100-m2 scale[J]. Nature, 2021,598:304-307. doi: 10.1038/s41586-021-03907-3

    2. [2]

      He J, Fu G, Zhang J X, Xu P, Sun J M. Multistage electron distribution engineering of iridium oxide by codoping W and Sn for enhanced acidic water oxidation electrocatalysis[J]. Small, 2022,182203365. doi: 10.1002/smll.202203365

    3. [3]

      Xu J, Jin H Y, Lu T, Li J S, Liu Y, Davey K, Zheng Y, Qiao S Z. IrOx·nH2O with lattice water-assisted oxygen exchange for high-performance proton exchange membrane water electrolyzers[J]. Sci. Adv., 2023,9(25)eadh1718. doi: 10.1126/sciadv.adh1718

    4. [4]

      Simondson D, Chatti M, Bonke S A, Tesch M F, Golnak R, Xiao J, Hoogeveen D A, Cherepanov P V, Gardiner J L, Tricoli A, MacFarlane D R, Simonov A N. Stable acidic water oxidation with a cobalt-iron-lead oxide catalyst operating via a cobalt-selective self-healing mechanism[J]. Angew. Chem. Int. Ed., 2021,60:15821-15826. doi: 10.1002/anie.202104123

    5. [5]

      Li L G, Wang P T, Shao Q, Huang X Q. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction[J]. Adv. Mater., 2021,332004243. doi: 10.1002/adma.202004243

    6. [6]

      Malinovic M, Paciok P, Koh E S, Geuß M, Choi J, Pfeifer P, Hofmann J P, Göhl D, Heggen M, Cherevko S, Ledendecker M. Size-controlled synthesis of IrO2 nanoparticles at high temperatures for the oxygen evolution reaction[J]. Adv. Energy Mater., 2023,132301450. doi: 10.1002/aenm.202301450

    7. [7]

      Chen H, Shi L, Liang X, Wang L, Asefa T, Zou X X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts[J]. Angew. Chem. Int. Ed., 2020,59:19654-19658. doi: 10.1002/anie.202006756

    8. [8]

      Rong C L, Dastafkan K, Wang Y, Zhao C. Breaking the activity and stability bottlenecks of electrocatalysts for oxygen evolution reactions in acids[J]. Adv. Mater., 2023,35(49)2211884. doi: 10.1002/adma.202211884

    9. [9]

      Yu H, Ke J, Shao Q. Two dimensional Ir-based catalysts for acidic OER[J]. Small, 2023,19(48)2304307. doi: 10.1002/smll.202304307

    10. [10]

      Gou W Y, Zhang M K, Zou Y, Zhou X M, Qu Y Q. Iridium-chromium oxide nanowires as highly performed OER catalysts in acidic media[J]. ChemCatChem, 2019,11:6008-6014. doi: 10.1002/cctc.201901411

    11. [11]

      Jiang X H, Zhang L S, Liu H Y, Wu D S, Wu F Y, Tian L, Liu L L, Zou J P, Luo S L, Chen B B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution[J]. Angew. Chem. Int. Ed., 2020,59:23112-23116. doi: 10.1002/anie.202011495

    12. [12]

      Liu Y Q, Liang X, Chen H, Gao R Q, Shi L, Yang L, Zou X X. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chin. J. Catal., 2021,42:1054-1077. doi: 10.1016/S1872-2067(20)63722-6

    13. [13]

      Chen S Y, Zhang S S, Guo L, Pan L, Shi C X, Zhang X W, Huang Z F, Yang G D, Zou J J. Reconstructed Ir-O-Mo species with strong Brønsted acidity for acidic water oxidation[J]. Nat. Commun., 2023,144127. doi: 10.1038/s41467-023-39822-6

    14. [14]

      Zheng X Z, Qin M K, Ma S X, Chen Y Z, Ning H H, Yang R, Mao S J, Wang Y. Strong oxide-support interaction over IrO2/V2O5 for efficient pH-universal water splitting[J]. Adv. Sci., 2022,92104636. doi: 10.1002/advs.202104636

    15. [15]

      Zeng Y C, Yan L, Tian S B, Sun X M. Loading IrOx- clusters on MnO2 boosts acidic water oxidation via metal-support interaction[J]. ACS Appl. Mater. Interfaces, 2023,15:47103-47110. doi: 10.1021/acsami.3c11038

    16. [16]

      Adams R, Shriner R L. Platinum oxide as a catalyst in the reduction of organnic compounds. Ⅲ. preparation and properties of the oxide of platinum obtained by the fusion of chloroolatinic acid what sodium nitrate[J]. J. Am. Chem. Soc., 1923,45:2171-2179. doi: 10.1021/ja01662a022

    17. [17]

      Xia A, Yu W R, Yi J, Tan G Q, Ren H J, Liu C. Synthesis of porous δ-MnO2 nanosheets and their supercapacitor performance[J]. J. Electroanal. Chem., 2019,839:25-31. doi: 10.1016/j.jelechem.2019.02.059

    18. [18]

      Korotcov A V, Huang Y S, Tiong K K, Tsai D S. Raman scattering characterization of well-aligned RuO2 and IrO2 nanocrystals[J]. J. Raman. Spectrosc., 2007,38:737-749. doi: 10.1002/jrs.1655

    19. [19]

      Metz P C, Ladonis A C, Gao P, Hey T, Misture S T. T, Hierarchical porosity via layer-tunnel conversion of macroporous δ-MnO2 nanosheet assemblies[J]. RSC Adv., 2020,10:1484-1497. doi: 10.1039/C9RA08432K

    20. [20]

      Gao J J, Xu C Q, Hung S F, Liu W, Cai W Z, Zeng Z P, Jia C M, Chen H M, Xiao H, Li J, Huang Y Q, Liu B. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation[J]. J. Am. Chem. Soc., 2019,141:3014-3023. doi: 10.1021/jacs.8b11456

    21. [21]

      Freakley S J, Ruiz-Esquius J, Morgan D J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited[J]. Surf. Interface Anal., 2017,49:794-799. doi: 10.1002/sia.6225

    22. [22]

      Lv F, Huang B L, Feng J R, Zhang W Y, Wang K, Li N, Zhou J H, Zhou P, Yang X, Du Y P, Su D, Guo S J. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst[J]. Natl. Sci. Rev., 2021,8nwab019. doi: 10.1093/nsr/nwab019

    23. [23]

      Lee S W, Baik C, Kim D H, Pak C. Control of Ir oxidation states to overcome the trade-off between activity and stability for the oxygen evolution reaction[J]. J. Power Sources, 2021,493229689. doi: 10.1016/j.jpowsour.2021.229689

    24. [24]

      Zhang W, Jiang X, Dong Z M, Wang J, Zhang N, Liu J, Xu G R, Wang L. Porous Pd/NiFeOx nanosheets enhance the pH-universal overall water splitting[J]. Adv. Funct. Mater., 2021,312107181. doi: 10.1002/adfm.202107181

    25. [25]

      Choi S, Park J, Kabiraz M K, Hong Y, Kwon T, Kim T, Oh A, Baik H, Lee M, Paek S M, Choi S I, Lee K. Pt dopant: Controlling the Ir oxidation states toward efficient and durable oxygen evolution reaction in acidic media[J]. Adv. Funct. Mater., 2020,302003935. doi: 10.1002/adfm.202003935

    26. [26]

      Li G F, Anderson L, Chen Y N, Pan M, Abel C P. New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media[J]. Sustain. Energy Fuels, 2018,2:237-251. doi: 10.1039/C7SE00337D

    27. [27]

      Zhu J W, Guo Y, Liu F, Xu H W, Gong L, Shi W J, Chen D, Wang P Y, Yang Y, Zhang C T, Wu J S, Luo J H, Mu S C. Regulative electronic states around ruthenium/ruthenium disulphide heterointerfaces for efficient water splitting in acidic media[J]. Angew. Chem. Int. Ed., 2021,60:12328-12334. doi: 10.1002/anie.202101539

    28. [28]

      Zhang L J, Jang H, Liu H H, Kim M G, Yang D J, Liu S G, Liu X E, Cho Jaephil. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst[J]. Angew. Chem. Int. Ed., 2021,60:18821-18829. doi: 10.1002/anie.202106631

    29. [29]

      Yang J D, Wang J X, Zhu L, Gao Q, Zeng W, Wang J F, Li Y Q. Enhanced electrocatalytic activity of a hierarchical CeO2@MnO2 core-shell composite for oxygen reduction reaction[J]. Ceram. Int, 2018,44:23073-23079. doi: 10.1016/j.ceramint.2018.09.111

    30. [30]

      Hao S Y, Wang Y H, Zheng G K, Qiu L H, Xu N, He Y, Lei L C, Zhang X W. Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media[J]. Appl. Catal. B-Environ., 2020,266118643. doi: 10.1016/j.apcatb.2020.118643

    31. [31]

      Wang D K, Zeng H, Xiong X, Wu M F, Xia M R, Xie M L, Zou J P, Luo S L. Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light[J]. Sci. Bull., 2020,65:113-122. doi: 10.1016/j.scib.2019.10.015

    32. [32]

      Antolini E, Cardellini F. Formation of carbon supported PtRu alloys: An XRD analysis[J]. J. Alloy. Compd., 2001,315:118-122. doi: 10.1016/S0925-8388(00)01260-3

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(0)
  • Abstract views(44)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return