Citation: Chuanming GUO, Kaiyang ZHANG, Yun WU, Rui YAO, Qiang ZHAO, Jinping LI, Guang LIU. Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459 shu

Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media

Figures(6)

  • MnO2-0.39IrOx (0.39 was the atomic ratio of Ir/Mn) catalysts were successfully prepared by the Adams method and applied for efficient oxygen precipitation reaction (OER) in an acidic medium. During the electrochemical measurement, MnO2-0.39IrOx enabled the water oxidation process to reach a current density of 10 mA·cm-2 with an overpotential of only 253 mV and maintained a stable test for more than 200 h. In addition, the noble metal Ir mass activity of MnO2-0.39IrOx was 61.3 mA·mg-1 at a potential of 1.50 V (vs RHE), which was 35.8 times higher than that of IrO2, increasing the precious metal utilization. Structural analysis revealed that the unique lamellar structure of MnO2-0.39IrOx substantially improves the electrochemically active surface of the catalysts and that there are certain electronic interactions between the Ir sites and the Mn sites. The analysis of the catalytic process showed that the MnO2-0.39IrOx surface showed some reconfiguration phenomenon and the Mn components achieved a continuous optimization of the chemical environment of the Ir sites, which led to the efficient acidic OER performance of the catalyst.
  • 加载中
    1. [1]

      Nishiyama H, Yamada T, Nakabayashi M, Maehara Y, Yamaguchi M, Kuromiya Y, Nagatsuma Y, Tokudome H, Akiyama S, Watanabe T, Narushima R, Okunaka S, Shibata N, Takata T, Hisatomi T, Domen K. Photocatalytic solar hydrogen production from water on a 100-m2 scale[J]. Nature, 2021,598:304-307. doi: 10.1038/s41586-021-03907-3

    2. [2]

      He J, Fu G, Zhang J X, Xu P, Sun J M. Multistage electron distribution engineering of iridium oxide by codoping W and Sn for enhanced acidic water oxidation electrocatalysis[J]. Small, 2022,182203365. doi: 10.1002/smll.202203365

    3. [3]

      Xu J, Jin H Y, Lu T, Li J S, Liu Y, Davey K, Zheng Y, Qiao S Z. IrOx·nH2O with lattice water-assisted oxygen exchange for high-performance proton exchange membrane water electrolyzers[J]. Sci. Adv., 2023,9(25)eadh1718. doi: 10.1126/sciadv.adh1718

    4. [4]

      Simondson D, Chatti M, Bonke S A, Tesch M F, Golnak R, Xiao J, Hoogeveen D A, Cherepanov P V, Gardiner J L, Tricoli A, MacFarlane D R, Simonov A N. Stable acidic water oxidation with a cobalt-iron-lead oxide catalyst operating via a cobalt-selective self-healing mechanism[J]. Angew. Chem. Int. Ed., 2021,60:15821-15826. doi: 10.1002/anie.202104123

    5. [5]

      Li L G, Wang P T, Shao Q, Huang X Q. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction[J]. Adv. Mater., 2021,332004243. doi: 10.1002/adma.202004243

    6. [6]

      Malinovic M, Paciok P, Koh E S, Geuß M, Choi J, Pfeifer P, Hofmann J P, Göhl D, Heggen M, Cherevko S, Ledendecker M. Size-controlled synthesis of IrO2 nanoparticles at high temperatures for the oxygen evolution reaction[J]. Adv. Energy Mater., 2023,132301450. doi: 10.1002/aenm.202301450

    7. [7]

      Chen H, Shi L, Liang X, Wang L, Asefa T, Zou X X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts[J]. Angew. Chem. Int. Ed., 2020,59:19654-19658. doi: 10.1002/anie.202006756

    8. [8]

      Rong C L, Dastafkan K, Wang Y, Zhao C. Breaking the activity and stability bottlenecks of electrocatalysts for oxygen evolution reactions in acids[J]. Adv. Mater., 2023,35(49)2211884. doi: 10.1002/adma.202211884

    9. [9]

      Yu H, Ke J, Shao Q. Two dimensional Ir-based catalysts for acidic OER[J]. Small, 2023,19(48)2304307. doi: 10.1002/smll.202304307

    10. [10]

      Gou W Y, Zhang M K, Zou Y, Zhou X M, Qu Y Q. Iridium-chromium oxide nanowires as highly performed OER catalysts in acidic media[J]. ChemCatChem, 2019,11:6008-6014. doi: 10.1002/cctc.201901411

    11. [11]

      Jiang X H, Zhang L S, Liu H Y, Wu D S, Wu F Y, Tian L, Liu L L, Zou J P, Luo S L, Chen B B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution[J]. Angew. Chem. Int. Ed., 2020,59:23112-23116. doi: 10.1002/anie.202011495

    12. [12]

      Liu Y Q, Liang X, Chen H, Gao R Q, Shi L, Yang L, Zou X X. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chin. J. Catal., 2021,42:1054-1077. doi: 10.1016/S1872-2067(20)63722-6

    13. [13]

      Chen S Y, Zhang S S, Guo L, Pan L, Shi C X, Zhang X W, Huang Z F, Yang G D, Zou J J. Reconstructed Ir-O-Mo species with strong Brønsted acidity for acidic water oxidation[J]. Nat. Commun., 2023,144127. doi: 10.1038/s41467-023-39822-6

    14. [14]

      Zheng X Z, Qin M K, Ma S X, Chen Y Z, Ning H H, Yang R, Mao S J, Wang Y. Strong oxide-support interaction over IrO2/V2O5 for efficient pH-universal water splitting[J]. Adv. Sci., 2022,92104636. doi: 10.1002/advs.202104636

    15. [15]

      Zeng Y C, Yan L, Tian S B, Sun X M. Loading IrOx- clusters on MnO2 boosts acidic water oxidation via metal-support interaction[J]. ACS Appl. Mater. Interfaces, 2023,15:47103-47110. doi: 10.1021/acsami.3c11038

    16. [16]

      Adams R, Shriner R L. Platinum oxide as a catalyst in the reduction of organnic compounds. Ⅲ. preparation and properties of the oxide of platinum obtained by the fusion of chloroolatinic acid what sodium nitrate[J]. J. Am. Chem. Soc., 1923,45:2171-2179. doi: 10.1021/ja01662a022

    17. [17]

      Xia A, Yu W R, Yi J, Tan G Q, Ren H J, Liu C. Synthesis of porous δ-MnO2 nanosheets and their supercapacitor performance[J]. J. Electroanal. Chem., 2019,839:25-31. doi: 10.1016/j.jelechem.2019.02.059

    18. [18]

      Korotcov A V, Huang Y S, Tiong K K, Tsai D S. Raman scattering characterization of well-aligned RuO2 and IrO2 nanocrystals[J]. J. Raman. Spectrosc., 2007,38:737-749. doi: 10.1002/jrs.1655

    19. [19]

      Metz P C, Ladonis A C, Gao P, Hey T, Misture S T. T, Hierarchical porosity via layer-tunnel conversion of macroporous δ-MnO2 nanosheet assemblies[J]. RSC Adv., 2020,10:1484-1497. doi: 10.1039/C9RA08432K

    20. [20]

      Gao J J, Xu C Q, Hung S F, Liu W, Cai W Z, Zeng Z P, Jia C M, Chen H M, Xiao H, Li J, Huang Y Q, Liu B. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation[J]. J. Am. Chem. Soc., 2019,141:3014-3023. doi: 10.1021/jacs.8b11456

    21. [21]

      Freakley S J, Ruiz-Esquius J, Morgan D J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited[J]. Surf. Interface Anal., 2017,49:794-799. doi: 10.1002/sia.6225

    22. [22]

      Lv F, Huang B L, Feng J R, Zhang W Y, Wang K, Li N, Zhou J H, Zhou P, Yang X, Du Y P, Su D, Guo S J. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst[J]. Natl. Sci. Rev., 2021,8nwab019. doi: 10.1093/nsr/nwab019

    23. [23]

      Lee S W, Baik C, Kim D H, Pak C. Control of Ir oxidation states to overcome the trade-off between activity and stability for the oxygen evolution reaction[J]. J. Power Sources, 2021,493229689. doi: 10.1016/j.jpowsour.2021.229689

    24. [24]

      Zhang W, Jiang X, Dong Z M, Wang J, Zhang N, Liu J, Xu G R, Wang L. Porous Pd/NiFeOx nanosheets enhance the pH-universal overall water splitting[J]. Adv. Funct. Mater., 2021,312107181. doi: 10.1002/adfm.202107181

    25. [25]

      Choi S, Park J, Kabiraz M K, Hong Y, Kwon T, Kim T, Oh A, Baik H, Lee M, Paek S M, Choi S I, Lee K. Pt dopant: Controlling the Ir oxidation states toward efficient and durable oxygen evolution reaction in acidic media[J]. Adv. Funct. Mater., 2020,302003935. doi: 10.1002/adfm.202003935

    26. [26]

      Li G F, Anderson L, Chen Y N, Pan M, Abel C P. New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media[J]. Sustain. Energy Fuels, 2018,2:237-251. doi: 10.1039/C7SE00337D

    27. [27]

      Zhu J W, Guo Y, Liu F, Xu H W, Gong L, Shi W J, Chen D, Wang P Y, Yang Y, Zhang C T, Wu J S, Luo J H, Mu S C. Regulative electronic states around ruthenium/ruthenium disulphide heterointerfaces for efficient water splitting in acidic media[J]. Angew. Chem. Int. Ed., 2021,60:12328-12334. doi: 10.1002/anie.202101539

    28. [28]

      Zhang L J, Jang H, Liu H H, Kim M G, Yang D J, Liu S G, Liu X E, Cho Jaephil. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst[J]. Angew. Chem. Int. Ed., 2021,60:18821-18829. doi: 10.1002/anie.202106631

    29. [29]

      Yang J D, Wang J X, Zhu L, Gao Q, Zeng W, Wang J F, Li Y Q. Enhanced electrocatalytic activity of a hierarchical CeO2@MnO2 core-shell composite for oxygen reduction reaction[J]. Ceram. Int, 2018,44:23073-23079. doi: 10.1016/j.ceramint.2018.09.111

    30. [30]

      Hao S Y, Wang Y H, Zheng G K, Qiu L H, Xu N, He Y, Lei L C, Zhang X W. Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media[J]. Appl. Catal. B-Environ., 2020,266118643. doi: 10.1016/j.apcatb.2020.118643

    31. [31]

      Wang D K, Zeng H, Xiong X, Wu M F, Xia M R, Xie M L, Zou J P, Luo S L. Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light[J]. Sci. Bull., 2020,65:113-122. doi: 10.1016/j.scib.2019.10.015

    32. [32]

      Antolini E, Cardellini F. Formation of carbon supported PtRu alloys: An XRD analysis[J]. J. Alloy. Compd., 2001,315:118-122. doi: 10.1016/S0925-8388(00)01260-3

  • 加载中
    1. [1]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    2. [2]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    3. [3]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    4. [4]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    5. [5]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    8. [8]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    9. [9]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    12. [12]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    17. [17]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    18. [18]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    19. [19]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    20. [20]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

Metrics
  • PDF Downloads(1)
  • Abstract views(450)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return