Citation: Jing JIN, Zhuming GUO, Zhiyin XIAO, Xiujuan JIANG, Yi HE, Xiaoming LIU. Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458 shu

Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations

Figures(12)

  • Five inorganic monoiron(Ⅱ) carbonyl salts 1-5, fac-M[Fe(CO)3I3]n (Mn+=Na+ (1), K+ (2), Mg2+ (3), Ca2+ (4), NH4+ (5)) were prepared from the reactions of cis-[Fe(CO)4I2] precursor with the iodo salts (MIn), and developed as CO-releasing molecules (CORMs) for CO therapy of cancer. The decomposition of salts 1-5 with CO-release in DMSO, D2O, saline, and phosphonate buffer solution was investigated by the Fourier transform infrared (FTIR) spectroscopic monitoring. The corresponding kinetics for the decomposing of these salts were estimated by abiding by a first-order model. Cytotoxicity of the five salts was assessed on a bladder cancer cell line (RT112) by the methyl thiazolyl tetrazolium (MTT) assays for 24 h, with the half maximal inhibitory concentration (IC50) values of 25-43 μmol·L-1. Notably, varying a counter ion of fac-[Fe(CO)3I3]- anion from an organic aminium to an inorganic cation unambiguously affects its stability and thus the cytotoxicity. Moreover, a mechanistic probing into the cytotoxicity of fac-[Fe(CO)3I3]- anion was paved. Interestingly, not only the produced iodine radicals but also the gaseous CO from the decomposition contributed to its cytotoxicity. Particularly, it was found that, with the treatment of the anion, the reactive oxygen species (ROS) level in the mitochondria significantly enhanced, and the mitochondria-related protein expression of Parkin was extremely upregulated. The ferroptosis inhibitor assays of Ferrostatin‑1 and Liproxstatin-1 confirmed that these complexes evoked a ferroptosis-involved pathway to contribute to their cytotoxicity. Therefore, a mechanistic understanding of the cytotoxicity of fac-[Fe(CO)3I3]- anion is proposed, which is stimulated by the decomposing of the anion, and thus manufactures the mitochondria-relevant activities such as fission, energy metabolism, and mitophagy, and evokes a pathway of ferroptosis, to lead severe cellular damage even death.
  • 加载中
    1. [1]

      Kim H P, Ryter S W, Choi A M K. CO as a cellular signaling molecule[J]. Annu. Rev. Pharmacol. Toxicol., 2006,46:411-449. doi: 10.1146/annurev.pharmtox.46.120604.141053

    2. [2]

      Tsuchihashi S, Busuttil R W, Kupiec-Weglinski J W. Heme oxygenase system//Jean-Franç ois D, Pierre-Alain C, Christian T, Rolf G. Signaling pathways in liver diseases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 291-298

    3. [3]

      Ling K, Men F, Wang W C, Zhou Y Q, Zhang H W, Ye D W. Carbon monoxide and its controlled release: Therapeutic application, detection and development of carbon monoxide-releasing molecules (CO-RMs)[J]. J. Med. Chem., 2017,61(7):2611-2635.

    4. [4]

      Motterlini R, Otterbein L E. The therapeutic potential of carbon monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743. doi: 10.1038/nrd3228

    5. [5]

      Romao C C, Blä ttler W A, Seixas J D, Bernardes G J L. Developing drug molecules for therapy with carbon monoxide[J]. Chem. Soc. Rev., 2012,41(9):3571-3583. doi: 10.1039/c2cs15317c

    6. [6]

      Yang X X, Lu W, Hopper C P, Ke B W, Wang B H. Nature's marvels endowed in gaseous molecules I: Carbon monoxide and its physiological and therapeutic roles[J]. Acta Pharm. Sin. B, 2021,11(6):1434-1445. doi: 10.1016/j.apsb.2020.10.010

    7. [7]

      Pena A C, Pamplona A. Heme oxygenase-1, carbon monoxide, and malaria - the interplay of chemistry and biology[J]. Coord. Chem. Rev., 2022,453214285. doi: 10.1016/j.ccr.2021.214285

    8. [8]

      Choi H I, Zeb A, Kim M S, Rana I, Khan N, Qureshi O S, Lim C W, Park J S, Gao Z G, Maeng H J, Kim J K. Controlled therapeutic delivery of CO from carbon monoxide-releasing molecules (CORMs)[J]. J. Control. Release, 2022,350:652-667. doi: 10.1016/j.jconrel.2022.08.055

    9. [9]

      Zhou Y Z, Yang T, Liang K, Chandrawati R. Metal-organic frameworks for therapeutic gas delivery[J]. Adv. Drug Deliv. Rev., 2021,171:199-214. doi: 10.1016/j.addr.2021.02.005

    10. [10]

      Wegiel B, Hanto D W, Otterbein L E. The social network of carbon monoxide in medicine[J]. Trends Mol. Med, 2013,19(1):3-11. doi: 10.1016/j.molmed.2012.10.001

    11. [11]

      Otterbein L E, Foresti R, Motterlini R. Heme oxygenase-1 and carbon monoxide in the heart: The balancing act between danger signaling and pro-survival[J]. Circ. Res., 2016,118(12):1940-1959. doi: 10.1161/CIRCRESAHA.116.306588

    12. [12]

      Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon monoxide-releasing molecules - characterization of biochemical and vascular activities[J]. Circ. Res., 2002,90(2):E17-E24.

    13. [13]

      Jiang X J, Xiao Z Y, Zhong W, Liu X M. Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs)[J]. Coord. Chem. Rev., 2021,429213634. doi: 10.1016/j.ccr.2020.213634

    14. [14]

      Fairlamb I J S, Lynam J M. Chapter 7 - carbon monoxide-releasing molecules: design principles inspired by mechanism, enabling activity to be controlled and tuned//Hirao T, Moriuchi T[J]. Advances in Bioorganometallic Chemistry. Amsterdam: Elsevier, 2019:137-154.

    15. [15]

      Ford P C. Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide[J]. Coord. Chem. Rev., 2018,376:548-564. doi: 10.1016/j.ccr.2018.07.018

    16. [16]

      Mann B E. 3.29 - Signaling molecule delivery (CO)//Reedijk J, Poeppelmeier K. Comprehensive Inorganic Chemistry Ⅱ (Second Edition). Amsterdam: Elsevier, 2013: 857-876

    17. [17]

      Rimmer R D, Pierri A E, Ford P C. Photochemically activated carbon monoxide release for biological targets. Toward developing air-stable photoCORMs labilized by visible light[J]. Coord. Chem. Rev., 2012,256(15/16):1509-1519.

    18. [18]

      Abeyrathna N, Washington K, Bashur C, Liao Y. Nonmetallic carbon monoxide releasing molecules (CORMs)[J]. Org. Biomol. Chem., 2017,15(41):8692-8699. doi: 10.1039/C7OB01674C

    19. [19]

      Ji X Y, Wang B H. Strategies toward organic carbon monoxide prodrugs[J]. Acc. Chem. Res., 2018,51(6):1377-1385. doi: 10.1021/acs.accounts.8b00019

    20. [20]

      Nakae T, Hirotsu M, Nakajima H. CO Release from N, C, S-Pincer iron(Ⅲ) carbonyl complexes induced by visible-to-NIR light irradiation: Mechanistic insight into effects of axial phosphorus ligands[J]. Inorg. Chem., 2018,57(14):8615-8626. doi: 10.1021/acs.inorgchem.8b01407

    21. [21]

      Ou J, Zheng W H, Xiao Z Y, Yan Y P, Jiang X J, Dou Y, Jiang R, Liu X M. Core-shell materials bearing iron(Ⅱ) carbonyl units and their CO-release via an upconversion process[J]. J. Mater. Chem. B, 2017,5(41):8161-8168. doi: 10.1039/C7TB01434A

    22. [22]

      Sitnikov N S, Li Y C, Zhang D F, Yard B, Schmalz H G. Design, synthesis, and functional evaluation of CO-releasing molecules triggered by penicillin G amidase as a model protease[J]. Angew. Chem. Int. Ed., 2015,54(42):12314-12318. doi: 10.1002/anie.201502445

    23. [23]

      Jiang X J, Chen L M, Wang X, Long L, Xiao Z Y, Liu X M. Photoinduced carbon monoxide release from half-sandwich iron(Ⅱ) carbonyl complexes by visible irradiation: Kinetic analysis and mechanistic investigation[J]. Chem.-Eur. J., 2015,21(37):13065-13072. doi: 10.1002/chem.201501348

    24. [24]

      Long L, Jiang X J, Wang X, Xiao Z Y, Liu X M. Water-soluble diiron hexacarbonyl complex as a CO-RM: Controllable CO-releasing, releasing mechanism and biocompatibility[J]. Dalton Trans., 2013,42(44):15663-15669. doi: 10.1039/c3dt51281a

    25. [25]

      Romanski S, Ruecker H, Stamellou E, Guttentag M, Neudoerfl J M, Alberto R, Amslinger S, Yard B, Schmalz H G. Iron dienylphosphate tricarbonyl complexes as water-soluble enzyme-triggered CO-releasing molecules (ET-CORMs)[J]. Organometallics, 2012,31(16):5800-5809. doi: 10.1021/om300359a

    26. [26]

      Atkin A J, Fairlamb I J S, Ward J S, Lynam J M. CO Release from norbornadiene iron(0) tricarbonyl complexes: Importance of ligand dissociation[J]. Organometallics, 2012,31(16):5894-5902. doi: 10.1021/om300419w

    27. [27]

      Jackson C S, Schmitt S, Dou Q P, Kodanko J J. Synthesis, characterization, and reactivity of the stable iron carbonyl complex[Fe(CO)(N4Py)](ClO4)2: Photoactivated carbon monoxide release, growth inhibitory activity, and peptide ligation[J]. Inorg. Chem., 2011,50(12):5336-5338. doi: 10.1021/ic200676s

    28. [28]

      Fairlamb I J S, Lynam J M, Moulton B E, Taylor I E, Duhme-Klair A K, Sawle P, Motterlini R. η1-2-pyrone metal carbonyl complexes as CO-releasing molecules (CO-RMs): A delicate balance between stability and CO liberation[J]. Dalton Trans., 2007,33:3603-3605.

    29. [29]

      Schlawe D, Majdalani A, Velcicky J, Heßler E, Wieder T, Prokop A, Schmalz H G. Iron-containing nucleoside analogues with pronounced apoptosis-inducing activity[J]. Angew. Chem. Int. Ed., 2004,43(13):1731-1734. doi: 10.1002/anie.200353132

    30. [30]

      JIANG X J, XIAO Z Y, LONG L, CHEN L M, ZHANG L Q, LIU X M. Interactions of a water-soluble diiron hexacarbonyl complex with biologically relevant molecules and their promotion in CO-Release[J]. Chinese J. Inorg. Chem., 2022,38(5):913-920.  

    31. [31]

      LUO J B, GUO J Z, XIAO Z Y, ZHONG W, LI X M, LIU X M. Preparation of dicarbonyl iron compounds with a bidentate phosphine and their CO release behaviors upon irradiation[J]. Chinese J. Inorg. Chem., 2022,38(7):1241-1251.  

    32. [32]

      ZhANG J D, JIANG X J, XIAO Z Y, CHEN L M, WANG X M, LIU X M. Preventing CO-releasing systems from forming precipitates and tuning CO-releasing rate via ligand exchange reaction[J]. Chinese J. Inorg. Chem., 2022,38(8):1593-1600.  

    33. [33]

      Yang X Q, Jin J, Guo Z M, Xiao Z Y, Chen N W, Jiang X J, He Y, Liu X M. The monoiron anion fac-[Fe(CO)3I3]- and its organic aminium salts: Their preparation, CO-release, and cytotoxicity[J]. New J. Chem., 2020,44(25):10300-10308. doi: 10.1039/D0NJ01182G

    34. [34]

      Xiao Z Y, Jiang R, Jin J, Yang X Q, Xu B Y, Liu X M, He Y B, He Y. Diiron(Ⅱ) pentacarbonyl complexes as CO-releasing molecules: Their synthesis, characterization, CO-releasing behaviour and biocompatibility[J]. Dalton Trans., 2019,48(2):468-477. doi: 10.1039/C8DT03982H

    35. [35]

      Guo Z M, Jin J, Xiao Z Y, Chen N W, Jiang X J, Liu X M, Wu L F, He Y, Zhang S H. Four iron(Ⅱ) carbonyl complexes containing both pyridyl and halide ligands: Their synthesis, characterization, stability, and anticancer activity[J]. Appl. Organomet. Chem., 2021,35(1)e6045. doi: 10.1002/aoc.6045

    36. [36]

      Guo J Z, Guo Z M, Xiao Z Y, Jin J, Yang X Q, He Y, Liu X M. Further exploration of the reaction between cis-[Fe(CO)4I2] and alkylamines: An aminium salt of fac-[Fe(CO)3I3]- or an amine-bound complex of fac-[Fe(CO)3I2(NH2R)]?[J]. Organomet. Chem., 2021,35(8).

    37. [37]

      Xiao Z Y, Wei Z H, Long L, Wang Y L, Evans D J, Liu X M. Diiron carbonyl complexes possessing a {Fe(Ⅱ)Fe(Ⅱ)} core: Synthesis, characterisation, and electrochemical investigation[J]. Dalton Trans., 2011,40(16):4291-4299. doi: 10.1039/c0dt01465f

    38. [38]

      Hieber W, Bader G. Reaktionen und Derivate des Eisencarbonyls, II.: Neuartige Kohlenoxyd-Verbindungen von Eisenhalogeniden[J]. Ber. Dtsch. Chem. Ges., 1928,61(8):1717-1722. doi: 10.1002/cber.19280610825

    39. [39]

      Pankowski M, Bigorgne M. Syntheses and isomerization of halocarbonyliron complexes: [FeX(CO)5-nLn]+, FeX2(CO)4-nLn and[FeX3(CO)3]- (L=PMe3; n=1, 2, 3; X=Cl, Br, I)[J]. J. Organomet. Chem., 1977,125(2):231-252. doi: 10.1016/S0022-328X(00)89443-7

    40. [40]

      Szabo C. Gasotransmitters in cancer: From pathophysiology to experimental therapy[J]. Nat. Rev. Drug Discov., 2016,15(3):185-203. doi: 10.1038/nrd.2015.1

    41. [41]

      Wang X S, Zeng J Y, Li M J, Li Q R, Gao F, Zhang X Z. Highly stable iron carbonyl complex delivery nanosystem for improving cancer therapy[J]. ACS Nano, 2020,14(8):9848-9860. doi: 10.1021/acsnano.0c02516

    42. [42]

      Piantadosi C A. Carbon monoxide, reactive oxygen signaling, and oxidative stress[J]. Free Radic. Biol. Med., 2008,45(5):562-569. doi: 10.1016/j.freeradbiomed.2008.05.013

    43. [43]

      Zuckerbraun B S, Chin B Y, Bilban M, d'Avila J d C, Rao J, Billiar T R, Otterbein L E. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species[J]. Faseb J., 2007,21(4):1099-1106. doi: 10.1096/fj.06-6644com

    44. [44]

      Stockwell B R, Jiang X J. The chemistry and biology of ferroptosis[J]. Cell Chem. Biol., 2020,27(4):365-375. doi: 10.1016/j.chembiol.2020.03.013

    45. [45]

      Jiang X J, Stockwell B R, Conrad M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat. Rev. Mol. Cell Biol., 2021,22(4):266-282. doi: 10.1038/s41580-020-00324-8

    46. [46]

      Dixon S J, Lemberg K M, Lamprecht M R, Skouta R, Zaitsev E M, Gleason C E, Patel D N, Bauer A J, Cantley A M, Yang W S, Morrison B, Stockwell B R. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042

    47. [47]

      Angeli J P F, Schneider M, Proneth B, Tyurina Y Y, Tyurin V A, Hammond V J, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Rådmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Förster H, Yefremova O, Heinrichmeyer M, Bornkamm G W, Geissler E K, Thomas S B, Stockwell B R, O'Donnell V B, Kagan V E, Schick J A, Conrad M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat. Cell Biol., 2014,16(12):1180-1191. doi: 10.1038/ncb3064

  • 加载中
    1. [1]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    2. [2]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    3. [3]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    4. [4]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    5. [5]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    6. [6]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    7. [7]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    8. [8]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    9. [9]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    10. [10]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    11. [11]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    12. [12]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    13. [13]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

    14. [14]

      Zhendong LiuSainan LiuBin LiuQi MengMeng YuanChunzheng YangYulong BianPing'an MaJun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626

    15. [15]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    16. [16]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    17. [17]

      Yuequan WangCongtian WuChengcheng FengQin ChenZhonggui HeShenwu ZhangCong LuoJin Sun . Spatiotemporally-controlled supramolecular hybrid nanoassembly enabling ferroptosis-augmented photodynamic immunotherapy of cancer. Chinese Chemical Letters, 2025, 36(3): 109902-. doi: 10.1016/j.cclet.2024.109902

    18. [18]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    19. [19]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    20. [20]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

Metrics
  • PDF Downloads(1)
  • Abstract views(247)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return