Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations
- Corresponding author: Zhiyin XIAO, zhiyin.xiao@zjxu.edu.cn Yi HE, heyi@zjxu.edu.cn
Citation: Jing JIN, Zhuming GUO, Zhiyin XIAO, Xiujuan JIANG, Yi HE, Xiaoming LIU. Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
Kim H P, Ryter S W, Choi A M K. CO as a cellular signaling molecule[J]. Annu. Rev. Pharmacol. Toxicol., 2006,46:411-449. doi: 10.1146/annurev.pharmtox.46.120604.141053
Tsuchihashi S, Busuttil R W, Kupiec-Weglinski J W. Heme oxygenase system//Jean-Franç ois D, Pierre-Alain C, Christian T, Rolf G. Signaling pathways in liver diseases. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 291-298
Ling K, Men F, Wang W C, Zhou Y Q, Zhang H W, Ye D W. Carbon monoxide and its controlled release: Therapeutic application, detection and development of carbon monoxide-releasing molecules (CO-RMs)[J]. J. Med. Chem., 2017,61(7):2611-2635.
Motterlini R, Otterbein L E. The therapeutic potential of carbon monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743. doi: 10.1038/nrd3228
Romao C C, Blä ttler W A, Seixas J D, Bernardes G J L. Developing drug molecules for therapy with carbon monoxide[J]. Chem. Soc. Rev., 2012,41(9):3571-3583. doi: 10.1039/c2cs15317c
Yang X X, Lu W, Hopper C P, Ke B W, Wang B H. Nature's marvels endowed in gaseous molecules I: Carbon monoxide and its physiological and therapeutic roles[J]. Acta Pharm. Sin. B, 2021,11(6):1434-1445. doi: 10.1016/j.apsb.2020.10.010
Pena A C, Pamplona A. Heme oxygenase-1, carbon monoxide, and malaria - the interplay of chemistry and biology[J]. Coord. Chem. Rev., 2022,453214285. doi: 10.1016/j.ccr.2021.214285
Choi H I, Zeb A, Kim M S, Rana I, Khan N, Qureshi O S, Lim C W, Park J S, Gao Z G, Maeng H J, Kim J K. Controlled therapeutic delivery of CO from carbon monoxide-releasing molecules (CORMs)[J]. J. Control. Release, 2022,350:652-667. doi: 10.1016/j.jconrel.2022.08.055
Zhou Y Z, Yang T, Liang K, Chandrawati R. Metal-organic frameworks for therapeutic gas delivery[J]. Adv. Drug Deliv. Rev., 2021,171:199-214. doi: 10.1016/j.addr.2021.02.005
Wegiel B, Hanto D W, Otterbein L E. The social network of carbon monoxide in medicine[J]. Trends Mol. Med, 2013,19(1):3-11. doi: 10.1016/j.molmed.2012.10.001
Otterbein L E, Foresti R, Motterlini R. Heme oxygenase-1 and carbon monoxide in the heart: The balancing act between danger signaling and pro-survival[J]. Circ. Res., 2016,118(12):1940-1959. doi: 10.1161/CIRCRESAHA.116.306588
Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon monoxide-releasing molecules - characterization of biochemical and vascular activities[J]. Circ. Res., 2002,90(2):E17-E24.
Jiang X J, Xiao Z Y, Zhong W, Liu X M. Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs)[J]. Coord. Chem. Rev., 2021,429213634. doi: 10.1016/j.ccr.2020.213634
Fairlamb I J S, Lynam J M. Chapter 7 - carbon monoxide-releasing molecules: design principles inspired by mechanism, enabling activity to be controlled and tuned//Hirao T, Moriuchi T[J]. Advances in Bioorganometallic Chemistry. Amsterdam: Elsevier, 2019:137-154.
Ford P C. Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide[J]. Coord. Chem. Rev., 2018,376:548-564. doi: 10.1016/j.ccr.2018.07.018
Mann B E. 3.29 - Signaling molecule delivery (CO)//Reedijk J, Poeppelmeier K. Comprehensive Inorganic Chemistry Ⅱ (Second Edition). Amsterdam: Elsevier, 2013: 857-876
Rimmer R D, Pierri A E, Ford P C. Photochemically activated carbon monoxide release for biological targets. Toward developing air-stable photoCORMs labilized by visible light[J]. Coord. Chem. Rev., 2012,256(15/16):1509-1519.
Abeyrathna N, Washington K, Bashur C, Liao Y. Nonmetallic carbon monoxide releasing molecules (CORMs)[J]. Org. Biomol. Chem., 2017,15(41):8692-8699. doi: 10.1039/C7OB01674C
Ji X Y, Wang B H. Strategies toward organic carbon monoxide prodrugs[J]. Acc. Chem. Res., 2018,51(6):1377-1385. doi: 10.1021/acs.accounts.8b00019
Nakae T, Hirotsu M, Nakajima H. CO Release from N, C, S-Pincer iron(Ⅲ) carbonyl complexes induced by visible-to-NIR light irradiation: Mechanistic insight into effects of axial phosphorus ligands[J]. Inorg. Chem., 2018,57(14):8615-8626. doi: 10.1021/acs.inorgchem.8b01407
Ou J, Zheng W H, Xiao Z Y, Yan Y P, Jiang X J, Dou Y, Jiang R, Liu X M. Core-shell materials bearing iron(Ⅱ) carbonyl units and their CO-release via an upconversion process[J]. J. Mater. Chem. B, 2017,5(41):8161-8168. doi: 10.1039/C7TB01434A
Sitnikov N S, Li Y C, Zhang D F, Yard B, Schmalz H G. Design, synthesis, and functional evaluation of CO-releasing molecules triggered by penicillin G amidase as a model protease[J]. Angew. Chem. Int. Ed., 2015,54(42):12314-12318. doi: 10.1002/anie.201502445
Jiang X J, Chen L M, Wang X, Long L, Xiao Z Y, Liu X M. Photoinduced carbon monoxide release from half-sandwich iron(Ⅱ) carbonyl complexes by visible irradiation: Kinetic analysis and mechanistic investigation[J]. Chem.-Eur. J., 2015,21(37):13065-13072. doi: 10.1002/chem.201501348
Long L, Jiang X J, Wang X, Xiao Z Y, Liu X M. Water-soluble diiron hexacarbonyl complex as a CO-RM: Controllable CO-releasing, releasing mechanism and biocompatibility[J]. Dalton Trans., 2013,42(44):15663-15669. doi: 10.1039/c3dt51281a
Romanski S, Ruecker H, Stamellou E, Guttentag M, Neudoerfl J M, Alberto R, Amslinger S, Yard B, Schmalz H G. Iron dienylphosphate tricarbonyl complexes as water-soluble enzyme-triggered CO-releasing molecules (ET-CORMs)[J]. Organometallics, 2012,31(16):5800-5809. doi: 10.1021/om300359a
Atkin A J, Fairlamb I J S, Ward J S, Lynam J M. CO Release from norbornadiene iron(0) tricarbonyl complexes: Importance of ligand dissociation[J]. Organometallics, 2012,31(16):5894-5902. doi: 10.1021/om300419w
Jackson C S, Schmitt S, Dou Q P, Kodanko J J. Synthesis, characterization, and reactivity of the stable iron carbonyl complex[Fe(CO)(N4Py)](ClO4)2: Photoactivated carbon monoxide release, growth inhibitory activity, and peptide ligation[J]. Inorg. Chem., 2011,50(12):5336-5338. doi: 10.1021/ic200676s
Fairlamb I J S, Lynam J M, Moulton B E, Taylor I E, Duhme-Klair A K, Sawle P, Motterlini R. η1-2-pyrone metal carbonyl complexes as CO-releasing molecules (CO-RMs): A delicate balance between stability and CO liberation[J]. Dalton Trans., 2007,33:3603-3605.
Schlawe D, Majdalani A, Velcicky J, Heßler E, Wieder T, Prokop A, Schmalz H G. Iron-containing nucleoside analogues with pronounced apoptosis-inducing activity[J]. Angew. Chem. Int. Ed., 2004,43(13):1731-1734. doi: 10.1002/anie.200353132
JIANG X J, XIAO Z Y, LONG L, CHEN L M, ZHANG L Q, LIU X M. Interactions of a water-soluble diiron hexacarbonyl complex with biologically relevant molecules and their promotion in CO-Release[J]. Chinese J. Inorg. Chem., 2022,38(5):913-920.
LUO J B, GUO J Z, XIAO Z Y, ZHONG W, LI X M, LIU X M. Preparation of dicarbonyl iron compounds with a bidentate phosphine and their CO release behaviors upon irradiation[J]. Chinese J. Inorg. Chem., 2022,38(7):1241-1251.
ZhANG J D, JIANG X J, XIAO Z Y, CHEN L M, WANG X M, LIU X M. Preventing CO-releasing systems from forming precipitates and tuning CO-releasing rate via ligand exchange reaction[J]. Chinese J. Inorg. Chem., 2022,38(8):1593-1600.
Yang X Q, Jin J, Guo Z M, Xiao Z Y, Chen N W, Jiang X J, He Y, Liu X M. The monoiron anion fac-[Fe(CO)3I3]- and its organic aminium salts: Their preparation, CO-release, and cytotoxicity[J]. New J. Chem., 2020,44(25):10300-10308. doi: 10.1039/D0NJ01182G
Xiao Z Y, Jiang R, Jin J, Yang X Q, Xu B Y, Liu X M, He Y B, He Y. Diiron(Ⅱ) pentacarbonyl complexes as CO-releasing molecules: Their synthesis, characterization, CO-releasing behaviour and biocompatibility[J]. Dalton Trans., 2019,48(2):468-477. doi: 10.1039/C8DT03982H
Guo Z M, Jin J, Xiao Z Y, Chen N W, Jiang X J, Liu X M, Wu L F, He Y, Zhang S H. Four iron(Ⅱ) carbonyl complexes containing both pyridyl and halide ligands: Their synthesis, characterization, stability, and anticancer activity[J]. Appl. Organomet. Chem., 2021,35(1)e6045. doi: 10.1002/aoc.6045
Guo J Z, Guo Z M, Xiao Z Y, Jin J, Yang X Q, He Y, Liu X M. Further exploration of the reaction between cis-[Fe(CO)4I2] and alkylamines: An aminium salt of fac-[Fe(CO)3I3]- or an amine-bound complex of fac-[Fe(CO)3I2(NH2R)]?[J]. Organomet. Chem., 2021,35(8).
Xiao Z Y, Wei Z H, Long L, Wang Y L, Evans D J, Liu X M. Diiron carbonyl complexes possessing a {Fe(Ⅱ)Fe(Ⅱ)} core: Synthesis, characterisation, and electrochemical investigation[J]. Dalton Trans., 2011,40(16):4291-4299. doi: 10.1039/c0dt01465f
Hieber W, Bader G. Reaktionen und Derivate des Eisencarbonyls, II.: Neuartige Kohlenoxyd-Verbindungen von Eisenhalogeniden[J]. Ber. Dtsch. Chem. Ges., 1928,61(8):1717-1722. doi: 10.1002/cber.19280610825
Pankowski M, Bigorgne M. Syntheses and isomerization of halocarbonyliron complexes: [FeX(CO)5-nLn]+, FeX2(CO)4-nLn and[FeX3(CO)3]- (L=PMe3; n=1, 2, 3; X=Cl, Br, I)[J]. J. Organomet. Chem., 1977,125(2):231-252. doi: 10.1016/S0022-328X(00)89443-7
Szabo C. Gasotransmitters in cancer: From pathophysiology to experimental therapy[J]. Nat. Rev. Drug Discov., 2016,15(3):185-203. doi: 10.1038/nrd.2015.1
Wang X S, Zeng J Y, Li M J, Li Q R, Gao F, Zhang X Z. Highly stable iron carbonyl complex delivery nanosystem for improving cancer therapy[J]. ACS Nano, 2020,14(8):9848-9860. doi: 10.1021/acsnano.0c02516
Piantadosi C A. Carbon monoxide, reactive oxygen signaling, and oxidative stress[J]. Free Radic. Biol. Med., 2008,45(5):562-569. doi: 10.1016/j.freeradbiomed.2008.05.013
Zuckerbraun B S, Chin B Y, Bilban M, d'Avila J d C, Rao J, Billiar T R, Otterbein L E. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species[J]. Faseb J., 2007,21(4):1099-1106. doi: 10.1096/fj.06-6644com
Stockwell B R, Jiang X J. The chemistry and biology of ferroptosis[J]. Cell Chem. Biol., 2020,27(4):365-375. doi: 10.1016/j.chembiol.2020.03.013
Jiang X J, Stockwell B R, Conrad M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat. Rev. Mol. Cell Biol., 2021,22(4):266-282. doi: 10.1038/s41580-020-00324-8
Dixon S J, Lemberg K M, Lamprecht M R, Skouta R, Zaitsev E M, Gleason C E, Patel D N, Bauer A J, Cantley A M, Yang W S, Morrison B, Stockwell B R. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042
Angeli J P F, Schneider M, Proneth B, Tyurina Y Y, Tyurin V A, Hammond V J, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Rådmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Förster H, Yefremova O, Heinrichmeyer M, Bornkamm G W, Geissler E K, Thomas S B, Stockwell B R, O'Donnell V B, Kagan V E, Schick J A, Conrad M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat. Cell Biol., 2014,16(12):1180-1191. doi: 10.1038/ncb3064
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
Lin Li , Bingjun Sun , Jin Sun , Lin Chen , Zhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Shuyan ZHAO . Field-induced CoⅡ single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231
Hao Wang , Meng-Qi Pan , Ya-Fei Wang , Chao Chen , Jian Xu , Yuan-Yuan Gao , Chuan-Song Qi , Wei Li , Xian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581
Zhongsen Wang , Lijun Qiu , Yunhua Huang , Meng Zhang , Xi Cai , Fanyu Wang , Yang Lin , Yanbiao Shi , Xiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Min Fu , Pan He , Sen Zhou , Wenqiang Liu , Bo Ma , Shiying Shang , Yaohao Li , Ruihan Wang , Zhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434
Yixia Zhang , Caili Xue , Yunpeng Zhang , Qi Zhang , Kai Zhang , Yulin Liu , Zhaohui Shan , Wu Qiu , Gang Chen , Na Li , Hulin Zhang , Jiang Zhao , Da-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Linear relationship: t1/2=677.05cNaI + 49.85, R2=0.99.
Determination of the production of iodine radical with a dose-dependent effect of the fac-[Fe(CO)3I3]- anion by a TMB assay.
Inset: the corresponding enlarged images.