Citation: Qiangqiang SUN, Pengcheng ZHAO, Ruoyu WU, Baoyue CAO. Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454 shu

Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis

  • Corresponding author: Baoyue CAO, 231052@slxy.edu.cn
  • Received Date: 2 December 2023
    Revised Date: 27 March 2024

Figures(6)

  • The multistage microporous electrocatalysts to assist the energy-efficient hydrogen generation from water electrolysis were fabricated on the surface of three-dimensional porous foam (NF) by a one-step hydrothermal synthesis strategy. When the molar ratio of sulfur to phosphorus in the initial mixed solution was 1∶1, an amorphous P-doped nickel-based sulfide (NiSP/NF) electrocatalyst, with Ni3S2 and NiPS3 as the main and secondary crystalline phase, respectively, was obtained by hydrothermal treatment at 120 ℃ for 24 h. Thanks to its unique bi-hierarchy microporous structure composed of interwoven interconnected ultra-thin nanosheets, yielding the nearly 14-fold increased electrochemical active surface area (ECSA), sufficient active sites and interface channels are provided for hydrogen evolution reaction (HER) during water splitting. Meanwhile, benefiting from the lattice defects created by crystalline Ni3S2 and the strong electronic interactions with crystalline P doping phases, respectively, the intrinsically catalytic activity of nickel-based electrocatalyst was significantly enhanced. The synergistic effects enable NiSP/NF to exhibit remarkable performances during the whole water splitting, achieving a current density of 10 mA·cm-2 in 1 mol·L-1 KOH solution with overpotentials for HER and OER as low as 67 and 212 mV, respectively. Assembled as an electrolyzer for overall water splitting (OWS), a current density of 100 mA·cm-2 can be achieved only needing a cell voltage of 1.878 V, even at 500 mA·cm-2 the needed cell voltage was only 2.558 V for NiSP/NF, which is dramatically superior to noble metal catalysts and helpful to improve hydrogen production efficiency for water electrolysis. Particularly, as a bifunctional electrocatalyst, NiSP/NF also exhibited excellent long-term stability and durability, because of less than a 0.03 V cell voltage increase after running a 120-hour chronopotentiometric test at 500 mA·cm-2.
  • 加载中
    1. [1]

      Bao W W, Yang C M, Ai T T, Zhang J J, Zhou L H, Li Y, Wei X L, Zou X Y, Wang Y. Modulating interfacial charge distribution of NiSe nanoarrays with NiFe-LDH nanosheets for boosting oxygen evolution reaction[J]. Fuel, 2023,332126227. doi: 10.1016/j.fuel.2022.126227

    2. [2]

      Vignolo-González H A, Gouder A, Laha S, Duppel V, Carretero-Palacios S, Jiménez-Solano A, Oshima T, Schützendübe P, Lotsch B V. Morphology matters: 0D/2D WO3 nanoparticle-ruthenium oxide nanosheet composites for enhanced photocatalytic oxygen evolution reaction rates[J]. Adv. Energy Mater., 2023,13(6)2203315. doi: 10.1002/aenm.202203315

    3. [3]

      Yuan J J, Huang B J, Lu Y C, Xu H, Qiao Y F, Xu H Q, He G Y, Chen H Q. One-step construction of FeNi LDH/FeNi2S4 heterojunctions for boosting electrocatalytic oxygen evolution reaction and hybrid capacitive storage[J]. Appl. Surf. Sci., 2023,610155480. doi: 10.1016/j.apsusc.2022.155480

    4. [4]

      Qi J, Zhong X Y, Zeng H Y, Wang C, Liu Z F, Chen J J, Gu L, Hong E, Li M X, Li J, Yang C Z. In-situ study for the elastic structure evolutions of three-dimensional Ir-O framework during the oxygen evolution reaction in acid[J]. Nano Res., 2023,16(7):9022-9030. doi: 10.1007/s12274-023-5668-0

    5. [5]

      Zhou Y, Guo Q Y, Luo J B, Wang X Z, Sun F C, Wang C C, Wang S T, Zhang J. The influence of increased content of Ni􀃮 in NiFe LDH via Zn doping on electrochemical catalytic oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2023,48(13):4984-4993. doi: 10.1016/j.ijhydene.2022.11.075

    6. [6]

      Li Y P, Wang W T, Cheng M Y, Qian Q Z, Zhu Y, Zhang G Q. Environmentally benign general synthesis of nonconsecutive carbon-coated RuP2 porous microsheets as efficient bifunctional electrocatalysts under neutral conditions for energy-saving H2 production in hybrid water electrolysis[J]. Catal. Sci. Technol., 2022,12(13):4339-4349. doi: 10.1039/D2CY00055E

    7. [7]

      Yang J J, Xu L, Zhu W X, Xie M, Liao F, Cheng T, Kang Z H, Shao M W. Rh/RhOx nanosheets as pH-universal bifunctional catalysts for hydrazine oxidation and hydrogen evolution reactions[J]. J. Mater. Chem. A, 2022,10(4):1891-1898. doi: 10.1039/D1TA09391F

    8. [8]

      Yang Y Q, Zhang K, Lin H L, Li X, Chan H C, Yang L C, Gao Q S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. ACS Catal, 2017,7(4):2257-2366. doi: 10.1021/acscatal.7b00039

    9. [9]

      Stern L A, Feng L G, Song F, Hu X L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles[J]. Energy Environ. Sci., 2015,8:2347-2351. doi: 10.1039/C5EE01155H

    10. [10]

      Deng Y, Xiao Z Y, Wang Z C, Lai J P, Liu X B, Zhang D, Han Y, Li S X, Sun W, Wang L. The rational adjusting of proton-feeding by Pt-doped FeP/C hollow nanorod for promoting nitrogen reduction kinetics[J]. Appl. Catal. B-Environ., 2021,291120047. doi: 10.1016/j.apcatb.2021.120047

    11. [11]

      Tang B S, Yang J, Kou Z K, Xu L, Seng H L, Xie Y N, D. Handoko A, Liu X X, Seh Z W, Kawai H, Gong H, Yang W F. Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-air batteries-driven overall water splitting[J]. Energy Storage Mater, 2019,23:1-7.

    12. [12]

      Han J, Wu J C, Guan S Q, Xu R, Zhang J, Wang J L, Guan T T, Liu Z C, Li K X. Interference effect of nitrogen-doped CQDs on tailoring nanostructure of CoMoP for improving high-effective water splitting[J]. Electrochim. Acta, 2023,438141595. doi: 10.1016/j.electacta.2022.141595

    13. [13]

      Wang J J, Zhang L A, Ren Y M, Wang P. Fluorine-doped nickel oxyhydroxide as a robust electrocatalyst for oxygen evolution reaction[J]. Electrochim. Acta, 2023,437141475. doi: 10.1016/j.electacta.2022.141475

    14. [14]

      Che Q J, Li Q, Chen X H, Tan Y, Xu X. Assembling amorphous (Fe-Ni)Cox-OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: Inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion[J]. Appl. Catal. B-Environ, 2020,263118338. doi: 10.1016/j.apcatb.2019.118338

    15. [15]

      Miao J W, Xiao F X, Yang H B, Khoo S Y, Chen J Z, Fan Z X, Hsu Y Y, Chen H M, Zhang H, Liu B. Hierarchical Ni-Mo-S nanosheets on carbon fibercloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte[J]. Sci. Adv., 2015,1e1500259. doi: 10.1126/sciadv.1500259

    16. [16]

      Gao M R, Liang J X, Zheng Y R, Xu Y F, Jiang J, Gao Q, Li J, Yu S H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation[J]. Nat. Commun., 2015,65982. doi: 10.1038/ncomms6982

    17. [17]

      Zhou Y, Li T T, Xi S Q, He C, Yang X G, Wu H J. One-step synthesis of self-standing Ni3S2/Ni2P heteronanorods on nickel foam for efficient electrocatalytic hydrogen evolution over a wide pH range[J]. ChemCatChem, 2018,10:5487-5495. doi: 10.1002/cctc.201801373

    18. [18]

      Chen W Z, Liu P Y, Zhang L, Liu Y, Liu Z L, He J L, Wang Y Q. High-efficient and durable overall water splitting performance by interfacial engineering of Fe-doped urchin-like Ni2P/Ni3S2 heterostructure[J]. Chem. Eng. J., 2021,424130434. doi: 10.1016/j.cej.2021.130434

    19. [19]

      Zhang X Y, Zhang S, Li J, Wang E. One-step synthesis of well-structured NiS-Ni2P2S6 nanosheets on nickel foam for efficient overall water splitting[J]. J. Mater. Chem. A, 2017,522131. doi: 10.1039/C7TA05285E

    20. [20]

      Sun Q Q, Li Y B, Wang J F, Cao B Y, Yu Y, Zhou C S, Zhang G C, Wang Z L, Zhao C. Pulsed electrodeposition of well-ordered nanoporous Cu-doped Ni arrays promotes high efficiency overall hydrazine splitting[J]. J. Mater. Chem. A, 2020,8:21084-21093. doi: 10.1039/D0TA08078K

    21. [21]

      Zeng L Y, Sun K A, Wang X B, Liu Y Q, Pan Y, Liu Z, Cao D W, Song Y, Liu S H, Liu C G. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electro-chemical overall-water-splitting activity[J]. Nano Energy, 2018,51:26-36. doi: 10.1016/j.nanoen.2018.06.048

    22. [22]

      SUN Q Q, ZHAO P C, WU R Y, CAO B Y, WANG Y M, FAN X M. Porous blade-like cobalt disulfide electrocatalyst boosting hydrazine-assistance energy-efficient hydrogen production[J]. Chinese J. Inorg. Chem., 2023,39(3):422-432.  

    23. [23]

      Wu Y Y, Liu Y P, Li G D, Zou X, Lian X R, Wang D J, Sun L, Asefa T, Zou X X. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3-xS4 coupled Ni3S2 nanosheet arrays[J]. Nano Energy, 2017,35:161-170. doi: 10.1016/j.nanoen.2017.03.024

    24. [24]

      Wu Y Y, Li G D, Liu Y P, Yang L, Lian X R, Asefa T, Zou X X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-Based electrocatalyst[J]. Adv. Funct. Mater., 2016,26(27):4839-4847. doi: 10.1002/adfm.201601315

    25. [25]

      Hu W, Chen R Q, Xie W, Zou L L, Qin N, Bao D H. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications[J]. ACS Appl. Mater. Interfaces, 2014,6(21):19318-19326. doi: 10.1021/am5053784

    26. [26]

      Zhang K, Duan Y X, Graham N, Yu W Z. Unveiling the synergy of polymorph heterointerface and sulfur vacancy in NiS/Ni3S2 electrocatalyst to promote alkaline hydrogen evolution reaction[J]. Appl. Catal. B-Environ., 2023,323122144. doi: 10.1016/j.apcatb.2022.122144

    27. [27]

      Zhang J, Cui R J, Li X A, Liu X H, Huang W. A nanohybrid consisting of NiPS3 nanoparticles coupled with defective graphene as a pH-universal electrocatalyst for efficient hydrogen evolution[J]. J. Mater. Chem. A, 2017,523536. doi: 10.1039/C7TA07672J

    28. [28]

      Li Y B, Tan X, Hocking R K, Bo X, Ren H J, Johannessen B, Smith S C, Zhao C. Implanting Ni-O-VOx sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution[J]. Nat. Commun., 2020,112720. doi: 10.1038/s41467-020-16554-5

    29. [29]

      Xiao C L, Li Y B, Lu X Y, Zhao C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting[J]. Adv. Funct.Mater., 2016,26(20):3515-3523. doi: 10.1002/adfm.201505302

    30. [30]

      Zou X, Liu Y P, Li G D, Wu Y Y, Liu D P, Li W, Li H W, Wang D J, Zhang Y, Zou X X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis[J]. Adv. Mater., 2017,291700404. doi: 10.1002/adma.201700404

    31. [31]

      Jenjeti R N, Kumar R, Sampath S. Two-dimensional, few-layer NiPS3 for flexible humidity sensor with high selectivity[J]. J. Mater. Chem. A, 2019,7(24)14545. doi: 10.1039/C9TA03214B

    32. [32]

      Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R H, Liu S H, Zhuang X D, Feng X L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity[J]. Angew. Chem. Int. Ed., 2016,128(23):6814-6819. doi: 10.1002/ange.201602237

    33. [33]

      Ma L B, Hu Y, Chen R P, Zhu G Y, Chen T, Lv H L, Wang Y R, Liang J, Liu H X, Yan C Z, Zhu H F, Tie Z X, Jin Z, Liu J. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution[J]. Nano Energy, 2016,24:139-147. doi: 10.1016/j.nanoen.2016.04.024

    34. [34]

      Liu Y, Liang X, Gu L, Zhang Y, Li G D, Zou X, Chen J S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 h[J]. Nat. Commun., 2018,9:1-10. doi: 10.1038/s41467-017-02088-w

    35. [35]

      SHENG Z M, TAO Y R, XU L L, YANG P, WANG W X, WU X C. CoFe‑P catalyst prepared by a facile electrodeposition for high‑efficient oxygen evolution reaction[J]. Chinese J. Inorg. Chem., 2023,39(7):1325-1337.  

    36. [36]

      Li Q, Wang D W, Han C, Ma X, Lu Q Q, Xing Z C, Yang X R. Construction of amorphous interface in an interwoven NiS/NiS2 structure for enhanced overall water splitting[J]. J. Mater. Chem. A, 2018,6(18):8233-8237. doi: 10.1039/C8TA01928B

    37. [37]

      Lin Y, He L B, Chen T, Zhou D, Wu L, Hou X D, Zheng C B. Cost-effective and environmentally-friendly synthesis of 3D Ni2P from scrap nickel for highly efficient hydrogen evolution in both acidic and alkaline media[J]. J. Mater. Chem. A, 2018,6(9):4088-4094. doi: 10.1039/C7TA09524D

    38. [38]

      Xiao K, Wei J X, Han W K, Liu Z Q. Bimetallic sulfide interfaces: Promoting destabilization of water molecules for overall water splitting[J]. J. Power Sources, 2021,487229408. doi: 10.1016/j.jpowsour.2020.229408

    39. [39]

      Gao W, Shi Y Q, Zhang Y F, Zuo L Z, Lu H Y, Huang Y P, Fan W, Liu T X. Molybdenum carbide anchored on graphene nanoribbons as highly efficient all-pH hydrogen evolution reaction electrocatalyst[J]. ACS Sustain. Chem. Eng., 2016,4:6313-6321. doi: 10.1021/acssuschemeng.6b00859

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    14. [14]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

Metrics
  • PDF Downloads(2)
  • Abstract views(160)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return