Citation: Zhihuan XU, Qing KANG, Yuzhen LONG, Qian YUAN, Cidong LIU, Xin LI, Genghuai TANG, Yuqing LIAO. Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447 shu

Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS

  • Corresponding author: Yuqing LIAO, dido_liaoyq@163.com
  • Received Date: 28 November 2023
    Revised Date: 21 May 2024

Figures(9)

  • Reduced graphene oxide/ZnS (rGO/ZnS) composites were successfully prepared by hydrothermal method using graphene oxide (GO), zinc acetate (Zn(CH3COO)2), and thiourea as raw materials. The microstructure and morphology of the sample were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), etc. The material was used as anodes for lithium-ion batteries, and electrochemical test results demonstrated that the asprepared rGO/ZnS composite exhibited significantly enhanced electrochemical lithium storage performance in comparison to rGO. The highly conductive rGO can provide an efficient path for the transport of lithium ions and electrons, and ZnS can provide a high theoretical specific capacity. The rGO/ZnS composites exhibited good lithium intercalation capacity and cycling performance under the synergistic effect of rGO and nanoscale highly dispersed spherical ZnS particles. When the GO mass concentration was 2 mg·mL-1, the rGO/ZnS composites had the best rate performance and the best cycling stability.
  • 加载中
    1. [1]

      Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012,11:19-29. doi: 10.1038/nmat3191

    2. [2]

      Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451:652-657. doi: 10.1038/451652a

    3. [3]

      Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414:359-367. doi: 10.1038/35104644

    4. [4]

      CHEN J, TAO Z L, GOU X L. Chemical power sources: Principles, technologies and applications. Beijing: Chemical Industry Press, 2006: 288-290

    5. [5]

      Tao S S, Cai J M, Cao Z W, Song B, Deng W T, Liu Y C, Hou H S, Zou G Q, Ji X B. Revealing the valence evolution of metal element in heterostructures for ultra-high power Li-ion capacitors[J]. Adv. Energy Mater., 2023,13(35)2301653. doi: 10.1002/aenm.202301653

    6. [6]

      Brandt K. Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994,69(3/4):173-183.

    7. [7]

      Reddy M V, Subba R G V, Chowdari B V R. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chem. Rev., 2013,113(7):5364-5457. doi: 10.1021/cr3001884

    8. [8]

      Whittingham S M. Ultimate limits to intercalation reactions for lithium batteries[J]. Chem. Rev., 2014,114(23):11414-11443. doi: 10.1021/cr5003003

    9. [9]

      Liu W J, Zhang X, Xu Y N, Wang L, Li Z, Li C, Wang K, Sun X Z, An Y B, Wu Z S, Ma Y W. 2D graphene/MnO heterostructure with strongly Stable interface enabling high performance flexible solid-state lithium-ion capacitors[J]. Adv. Funct. Mater., 2022,32(30)2202342. doi: 10.1002/adfm.202202342

    10. [10]

      YANG X L, WANG C H, LU Z J, PAN S G, FU Y S, WANG X. Three-dimensional porous carbon nanotube-reduced graphene oxide composite aerogel for high-performance symmetric supercapacitors[J]. Chinese J. Inorg. Chem., 2024,40(1):155-163.  

    11. [11]

      WU Y P, WAN C R, JIANG C Y. Lithium-ion rechargeable battery. Beijing: Chemical Industry Press, 2002: 2-5

    12. [12]

      WEI L, WANG J K, LIU K G, ZHOU Q Y, PAN H X, FAN S, ZHANG Y. Nanocellulose/reduced graphene oxide composites for high-performance supercapacitors[J]. Chinese J. Inorg. Chem., 2023,39(3):456-464.  

    13. [13]

      Tao S S, Momen R Y, Luo Z, Zhu Y R, Xiao X H, Cao Z W, Xiong D Y, Deng W T, Liu Y C, Hou H S, Zou G Q, Ji X B. Trapping lithium selenides with evolving heterogeneous interfaces for high-power lithium-ion capacitors[J]. Small, 2023,19(15)2207975. doi: 10.1002/smll.202207975

    14. [14]

      WANG H Q. Preparation of mesophase carbon microspheres and their electrochemical properties. Changsha: Central South University, 2004: 25-42

    15. [15]

      ZHOU H H, WU X, ZHOU C K, REN J G. Preparation and electrochemical properties of AlF3-coated natural graphite anode materials[J]. Chinese J. Inorg. Chem., 2018,34(4):676-682.  

    16. [16]

      Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011,334:928-935. doi: 10.1126/science.1212741

    17. [17]

      XU G, JIANG X N, CHEN W X. Preparation of ZnS@C/rGO composites and their electrochemical reversible lithium storage properties[J]. Chinese J. Inorg. Chem., 2022,38(5):891-900.  

    18. [18]

      TIAN Y, LI L, XIN Z X, ZHANG W Z, XU Y M. Multi-mode photo-degradation of flower globular heterostructure composites ZnS/ZnO/ZnWO4 and hydrogen production by photolysis of water[J]. Chinese J. Inorg. Chem., 2019,35(3):493-504.  

    19. [19]

      LIU H R, FANG L Y, JIA W, JIA H S. Hydrothermal preparation of ZnS nanospheres and their photocatalytic properties[J]. Chinese J. Inorg. Chem., 2015,31(3):459-464.  

    20. [20]

      Valet S, Bohlmann T, Burkert A, Ebell G. Zinc acetate containing gel pads for electrochemical measurements of Zn samples[J]. J. Electroanal. Chem., 2023,948117814. doi: 10.1016/j.jelechem.2023.117814

    21. [21]

      Liao Y Q, Wu C, Zhong Y T, Chen M, Cai L Y, Wang H R, Liu X, Cao G Z, Li W S. Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodiumion storage[J]. Nano Res., 2020,13:188-195. doi: 10.1007/s12274-019-2594-2

    22. [22]

      Lu J H, Lian F, Guan L L, Zhang Y X, Ding F. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages[J]. J. Mater. Chem. A, 2019,7(3):991-997. doi: 10.1039/C8TA09955C

    23. [23]

      HUI K L, FU J P, GAO T, TANG M X. Research progress of metal sulfides in batteries[J]. Chinese Journal of Applied Chemistry, 2020,37(12):1384-1402. doi: 10.11944/j.issn.1000-0518.2020.12.200190

    24. [24]

      LIU Y, YANG C T. Preparation and properties of NiO/CNT cathode material for lithium sulfur batteries[J]. Electronic Components and Materials, 2023,42(2):153-157.  

    25. [25]

      Wu H, Li Z X, Wang Z C, Ma Y J, Huang S R, Ding F, Li F Q, Zhai Q X, Ren Y L, Zheng X W, Yang Y R, Tang S C, Deng Y, Meng X K. Regulation of electronic structure in mediumentropy metal sulfides nanoparticles as highly efficient bifunctional electrocatalysts for zinc-air battery[J]. Appl. Catal. B-Environ., 2023,325122356. doi: 10.1016/j.apcatb.2022.122356

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(0)
  • Abstract views(194)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return