Citation: Zhihuan XU, Qing KANG, Yuzhen LONG, Qian YUAN, Cidong LIU, Xin LI, Genghuai TANG, Yuqing LIAO. Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447 shu

Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS

  • Corresponding author: Yuqing LIAO, dido_liaoyq@163.com
  • Received Date: 28 November 2023
    Revised Date: 21 May 2024

Figures(9)

  • Reduced graphene oxide/ZnS (rGO/ZnS) composites were successfully prepared by hydrothermal method using graphene oxide (GO), zinc acetate (Zn(CH3COO)2), and thiourea as raw materials. The microstructure and morphology of the sample were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), etc. The material was used as anodes for lithium-ion batteries, and electrochemical test results demonstrated that the asprepared rGO/ZnS composite exhibited significantly enhanced electrochemical lithium storage performance in comparison to rGO. The highly conductive rGO can provide an efficient path for the transport of lithium ions and electrons, and ZnS can provide a high theoretical specific capacity. The rGO/ZnS composites exhibited good lithium intercalation capacity and cycling performance under the synergistic effect of rGO and nanoscale highly dispersed spherical ZnS particles. When the GO mass concentration was 2 mg·mL-1, the rGO/ZnS composites had the best rate performance and the best cycling stability.
  • 加载中
    1. [1]

      Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012,11:19-29. doi: 10.1038/nmat3191

    2. [2]

      Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451:652-657. doi: 10.1038/451652a

    3. [3]

      Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414:359-367. doi: 10.1038/35104644

    4. [4]

      CHEN J, TAO Z L, GOU X L. Chemical power sources: Principles, technologies and applications. Beijing: Chemical Industry Press, 2006: 288-290

    5. [5]

      Tao S S, Cai J M, Cao Z W, Song B, Deng W T, Liu Y C, Hou H S, Zou G Q, Ji X B. Revealing the valence evolution of metal element in heterostructures for ultra-high power Li-ion capacitors[J]. Adv. Energy Mater., 2023,13(35)2301653. doi: 10.1002/aenm.202301653

    6. [6]

      Brandt K. Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994,69(3/4):173-183.

    7. [7]

      Reddy M V, Subba R G V, Chowdari B V R. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chem. Rev., 2013,113(7):5364-5457. doi: 10.1021/cr3001884

    8. [8]

      Whittingham S M. Ultimate limits to intercalation reactions for lithium batteries[J]. Chem. Rev., 2014,114(23):11414-11443. doi: 10.1021/cr5003003

    9. [9]

      Liu W J, Zhang X, Xu Y N, Wang L, Li Z, Li C, Wang K, Sun X Z, An Y B, Wu Z S, Ma Y W. 2D graphene/MnO heterostructure with strongly Stable interface enabling high performance flexible solid-state lithium-ion capacitors[J]. Adv. Funct. Mater., 2022,32(30)2202342. doi: 10.1002/adfm.202202342

    10. [10]

      YANG X L, WANG C H, LU Z J, PAN S G, FU Y S, WANG X. Three-dimensional porous carbon nanotube-reduced graphene oxide composite aerogel for high-performance symmetric supercapacitors[J]. Chinese J. Inorg. Chem., 2024,40(1):155-163.  

    11. [11]

      WU Y P, WAN C R, JIANG C Y. Lithium-ion rechargeable battery. Beijing: Chemical Industry Press, 2002: 2-5

    12. [12]

      WEI L, WANG J K, LIU K G, ZHOU Q Y, PAN H X, FAN S, ZHANG Y. Nanocellulose/reduced graphene oxide composites for high-performance supercapacitors[J]. Chinese J. Inorg. Chem., 2023,39(3):456-464.  

    13. [13]

      Tao S S, Momen R Y, Luo Z, Zhu Y R, Xiao X H, Cao Z W, Xiong D Y, Deng W T, Liu Y C, Hou H S, Zou G Q, Ji X B. Trapping lithium selenides with evolving heterogeneous interfaces for high-power lithium-ion capacitors[J]. Small, 2023,19(15)2207975. doi: 10.1002/smll.202207975

    14. [14]

      WANG H Q. Preparation of mesophase carbon microspheres and their electrochemical properties. Changsha: Central South University, 2004: 25-42

    15. [15]

      ZHOU H H, WU X, ZHOU C K, REN J G. Preparation and electrochemical properties of AlF3-coated natural graphite anode materials[J]. Chinese J. Inorg. Chem., 2018,34(4):676-682.  

    16. [16]

      Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011,334:928-935. doi: 10.1126/science.1212741

    17. [17]

      XU G, JIANG X N, CHEN W X. Preparation of ZnS@C/rGO composites and their electrochemical reversible lithium storage properties[J]. Chinese J. Inorg. Chem., 2022,38(5):891-900.  

    18. [18]

      TIAN Y, LI L, XIN Z X, ZHANG W Z, XU Y M. Multi-mode photo-degradation of flower globular heterostructure composites ZnS/ZnO/ZnWO4 and hydrogen production by photolysis of water[J]. Chinese J. Inorg. Chem., 2019,35(3):493-504.  

    19. [19]

      LIU H R, FANG L Y, JIA W, JIA H S. Hydrothermal preparation of ZnS nanospheres and their photocatalytic properties[J]. Chinese J. Inorg. Chem., 2015,31(3):459-464.  

    20. [20]

      Valet S, Bohlmann T, Burkert A, Ebell G. Zinc acetate containing gel pads for electrochemical measurements of Zn samples[J]. J. Electroanal. Chem., 2023,948117814. doi: 10.1016/j.jelechem.2023.117814

    21. [21]

      Liao Y Q, Wu C, Zhong Y T, Chen M, Cai L Y, Wang H R, Liu X, Cao G Z, Li W S. Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodiumion storage[J]. Nano Res., 2020,13:188-195. doi: 10.1007/s12274-019-2594-2

    22. [22]

      Lu J H, Lian F, Guan L L, Zhang Y X, Ding F. Adapting FeS2 micron particles as an electrode material for lithium-ion batteries via simultaneous construction of CNT internal networks and external cages[J]. J. Mater. Chem. A, 2019,7(3):991-997. doi: 10.1039/C8TA09955C

    23. [23]

      HUI K L, FU J P, GAO T, TANG M X. Research progress of metal sulfides in batteries[J]. Chinese Journal of Applied Chemistry, 2020,37(12):1384-1402. doi: 10.11944/j.issn.1000-0518.2020.12.200190

    24. [24]

      LIU Y, YANG C T. Preparation and properties of NiO/CNT cathode material for lithium sulfur batteries[J]. Electronic Components and Materials, 2023,42(2):153-157.  

    25. [25]

      Wu H, Li Z X, Wang Z C, Ma Y J, Huang S R, Ding F, Li F Q, Zhai Q X, Ren Y L, Zheng X W, Yang Y R, Tang S C, Deng Y, Meng X K. Regulation of electronic structure in mediumentropy metal sulfides nanoparticles as highly efficient bifunctional electrocatalysts for zinc-air battery[J]. Appl. Catal. B-Environ., 2023,325122356. doi: 10.1016/j.apcatb.2022.122356

  • 加载中
    1. [1]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    2. [2]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    3. [3]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    10. [10]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    11. [11]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    12. [12]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    14. [14]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    15. [15]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

Metrics
  • PDF Downloads(7)
  • Abstract views(1458)
  • HTML views(398)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return