Citation: Zhihong LUO, Yan SHI, Jinyu AN, Deyi ZHENG, Long LI, Quansheng OUYANG, Bin SHI, Jiaojing SHAO. Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444 shu

Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries

Figures(6)

  • Herein, the positively charged two-dimensional (2D) porous silica (PSN+) nanosheet was obtained by modifying the 2D silica obtained from acid-etched 2D vermiculite, and then the PSN+ was used as the filler of polyethylene oxide (PEO)-based solid polymer electrolytes (SPEs). Given the abundant positive charges, PSN+ effectively binds with the anions dissociated from lithium salts, thereby promoting lithium-ion transport and achieving a decent lithium-ion transference number. At 50 ℃, the PSN+-based SPEs demonstrated a higher ionic conductivity of 7.5×10-5 S·cm-1, lithium-ion transference number of 0.30, and a stable voltage window of 4.41 V. Consequently, the as-assembled LiFePO4||Li batteries delivered excellent initial discharge specific capacity of 155.7 mAh·g-1 at 0.2C with 97.1% capacity retention after 100 cycles at 50 ℃.
  • 加载中
    1. [1]

      Wang Z, Shen L, Deng S G, Cui P, Yao X Y. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries[J]. Adv. Mater., 2021,33(25)2100353. doi: 10.1002/adma.202100353

    2. [2]

      Zhou M H, Liu R L, Jia D Y, Cui Y, Liu Q T, Liu S H, Wu D C. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries[J]. Adv. Mater., 2021,33(29)2100943. doi: 10.1002/adma.202100943

    3. [3]

      TU F F, XIE J, GUO F, ZHAO X B, WANG Y P, CHEN D, XIANG J Y, CHEN J. Preparation and electrochemical performance of Li6.4La3Zr1.4Ta0.6O12/polymer-based solid composite electrolyte[J]. Chinese J. Inorg. Chem., 2020,36(8):1515-1523.  

    4. [4]

      Ye L H, Li X. A dynamic stability design strategy for lithium metal solid state batteries[J]. Nature, 2021,593(7858):218-222. doi: 10.1038/s41586-021-03486-3

    5. [5]

      Zhang W Q, Nie J H, Li F, Wang Z L, Sun C W. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018,45:413-419. doi: 10.1016/j.nanoen.2018.01.028

    6. [6]

      Wang Y, Zanelotti C J, Wang X E, Kerr R, Jin L Y, Kan W H, Dingemans T J, Forsyth M, Madsen L A. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium-ion pathways[J]. Nat. Mater., 2021,20(9):1255-1263. doi: 10.1038/s41563-021-00995-4

    7. [7]

      Huo H Y, Gao J, Zhao N, Zhang D X, Holmes N G, Li X N, Sun Y P, Fu J M, Li R Y, Guo X X, Sun X L. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nat. Commun., 2021,12(1)176. doi: 10.1038/s41467-020-20463-y

    8. [8]

      WANG X, YANG J J, SHAO L, LI J J, ZHAO W F, MA A J, ZHANG G, CHEN W X. A facile preparation of composite polymer electrolyte with high ionic conductivity by thermal treatment[J]. Scientia Sinica Chimica, 2019,49(2):360-367.  

    9. [9]

      Zhang Y F, Wang J Y, Tan C, He Y, Chen Y Z, Huo S K, Zeng D L, Li C, Cheng H S. Fire-retardant sp boron-based single ion conducting polymer electrolyte for safe, high efficiency and dendrite-free Li-metal batteries[J]. J. Membr. Sci., 2021,620118921. doi: 10.1016/j.memsci.2020.118921

    10. [10]

      Jung S K, Gwon H, Yoon G, Miara L J, Lacivita V, Kim J S. Pliable lithium superionic conductor for all-solid-state batteries[J]. ACS Energy Lett., 2021,6(5):2006-2015. doi: 10.1021/acsenergylett.1c00545

    11. [11]

      Lin Y, Wang X M, Liu J, Miller J D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries[J]. Nano Energy, 2017,31:478-485. doi: 10.1016/j.nanoen.2016.11.045

    12. [12]

      ZHAO X, XIONG H M, CHEN J S. Proton-conducting and ionic-conducting polymer electrolytes based on polyethylene oxide (PEO)[J]. Chinese J. Inorg. Chem., 2002,18(1):63-66.  

    13. [13]

      Jiang Y, Yan X M, Ma Z F, Mei P, Xiao W, You Q L, Zhang Y. Development of the PEO based solid polymer electrolytes for all-solid-state lithium-ion batteries[J]. Polymers, 2018,10(11)10111237.

    14. [14]

      Liu Y L, Zhao Y, Lu W, Sun L Q, Lin L, Zheng M, Sun X L, Xie H M. PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries[J]. Nano Energy, 2021,88106205. doi: 10.1016/j.nanoen.2021.106205

    15. [15]

      Liu H B, Sun Q, Cheng J, Zhang H Q, Xu X, Li Y Y, Zeng Z, Zhao Y, Li D P, Lu J Y, Ci L J. Stable operation of polymer electrolyte-solid-state batteries via lone-pair electron fillers[J]. Nano Res., 2023,16(11):12727-12737. doi: 10.1007/s12274-023-6142-8

    16. [16]

      Liu W T, Jiang J B, Yang Z H, Liu Y, Yang Z F, Bu M, Liao S X, Wu W Y, Huang T Q, Sang S B, Liu H T. Poly(ethylene oxide)-based composite electrolyte with lithium-doped high-entropy oxide ceramic enabled robust solid-state lithium-metal batteries[J]. Chem. Asian J., 2022,17(22)e202200839. doi: 10.1002/asia.202200839

    17. [17]

      Zeng F Y, Sun Y Y, Hui B, Xia Y Z, Zou Y H, Zhang X L, Yang D J. Three-dimensional porous alginate fiber membrane reinforced PEO-based solid polymer electrolyte for safe and high‐performance lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(39):43805-43812. doi: 10.1021/acsami.0c13039

    18. [18]

      Revathy C, Sunitha V R, Money B K, Joseph R, Radhakrishnan S. Role of mixed molecular weight PEO-PVDF polymers in improving the ionic conductivity of blended solid polymer electrolytes[J]. Ionics, 2023,29(10):4025-4035. doi: 10.1007/s11581-023-05141-5

    19. [19]

      Li L B, Shan Y H, Wang F R, Chen X H, Zhao Y M, Zhou D, Wang H, Cui W J. Improving fast and safe transfer of lithium-ions in solid-state lithium batteries by porosity and channel structure of polymer electrolyte[J]. ACS Appl. Mater. Interfaces, 2021,13(41):48525-48535. doi: 10.1021/acsami.1c11489

    20. [20]

      Khan K, Hanif M B, Xin H, Hussain A, Ali H G, Fu B, Fang Z X, Motola M, Xu Z Q, Wu M Q. PEO-based solid composite polymer electrolyte for high capacity retention all-solid-state lithium metal battery[J]. Small, 2023,20(4)2305772.

    21. [21]

      Su Y X, Xu F, Zhang X R, Qiu Y Q, Wang H Q. Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries[J]. Nano-Micro Lett., 2023,15(1)82. doi: 10.1007/s40820-023-01055-z

    22. [22]

      Jeong D, Shim J, Shin H, Lee J C. Sustainable lignin-derived cross-linked graft polymers as electrolyte and binder materials for lithium metal batteries[J]. Chem. Sus. Chem., 2020,13(10):2642-2649. doi: 10.1002/cssc.201903466

    23. [23]

      Liu D, Lu Z, Lin Z H, Zhang C X, Dai K, Wei W F. Organoboron- and cyano-grafted solid polymer electrolytes boost the cyclability and safety of high-voltage lithium metal batteries[J]. ACS Appl. Mater. Interfaces, 2023,15(17):21112-21122. doi: 10.1021/acsami.3c01681

    24. [24]

      Zhao Z K, Zhang Y M, Li S J, Wang S H, Li Y L, Mi H W, Sun L N, Ren X Z, Zhang P X. A lithium carboxylate grafted dendrite-free polymer electrolyte for an all-solid-state lithium-ion battery[J]. J. Mater. Chem. A, 2019,7(45):25818-25823. doi: 10.1039/C9TA10689H

    25. [25]

      Guo Z M, Pang Y P, Xia S X, Xu F, Yang J H, Sun L X, Zheng S Y. Uniform and anisotropic solid electrolyte membrane enables superior solid-state Li metal batteries[J]. Adv. Sci., 2021,8(16)2100899. doi: 10.1002/advs.202100899

    26. [26]

      Zhang Z, Wang J L, Zhang S L, Ying H G, Zhuang Z H, Ma F, Huang P F, Yang T T, Han G R, Han W Q. Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition[J]. Energy Storage Mater., 2021,43:229-237. doi: 10.1016/j.ensm.2021.09.002

    27. [27]

      Merrill L C, Chen X C, Zhang Y M, Ford H O, Lou K, Zhang Y B, Yang G, Wang Y Y, Schaefer J L, Dudney N J. Polymer-ceramic composite electrolytes for lithium batteries: A comparison between the single-ion-conducting polymer matrix and its counterpart[J]. ACS Appl. Energy Mater., 2020,3(9):8871-8881. doi: 10.1021/acsaem.0c01358

    28. [28]

      Li S, Zhang S Q, Shen L, Liu Q, Ma J B, Lv W, He Y B, Yang Q H. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J]. Adv. Sci., 2020,7(5)1903088. doi: 10.1002/advs.201903088

    29. [29]

      Luo Z H, Li W Y, Guo C, Song Y, Zhou M X, Shi Y, Xu J, Li L, Shi B, Ouyang Q S, Shao J J, Zhou G M. Two-dimensional silica enhanced solid polymer electrolyte for lithium metal batteries[J]. Particuology, 2024,85:146-154. doi: 10.1016/j.partic.2023.04.002

    30. [30]

      Li W Y, Luo Z H, Long X, Long J Y, Pang C, Li H, Zhi X, Shi B, Shao J J, He Y B. Cation vacancy-boosted Lewis acid-base interactions in a polymer electrolyte for high-performance lithium metal batteries[J]. ACS Appl. Mater. Interfaces, 2021,13(43):51107-51116. doi: 10.1021/acsami.1c17002

    31. [31]

      Duluard S, Grondin J, Bruneel J L, Pianet I, Grélard A, Campet G, Delville M H, Lassègues J C. Lithium solvation and diffusion in the 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid[J]. J. Raman Spectrosc., 2008,39(5):627-632. doi: 10.1002/jrs.1896

    32. [32]

      Chen N, Dai Y J, Xing Y, Wang L L, Guo C, Chen R J, Guo S J, Wu F. Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries[J]. Energy Environ. Sci., 2017,10(7):1660-1667. doi: 10.1039/C7EE00988G

  • 加载中
    1. [1]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    4. [4]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    5. [5]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    6. [6]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    7. [7]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    8. [8]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    9. [9]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    10. [10]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    15. [15]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    16. [16]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    17. [17]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    18. [18]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    19. [19]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    20. [20]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

Metrics
  • PDF Downloads(1)
  • Abstract views(110)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return