Citation: Qiang ZHAO, Zhinan GUO, Shuying LI, Junli WANG, Zuopeng LI, Zhifang JIA, Kewei WANG, Yong GUO. Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435 shu

Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties

Figures(13)

  • A series of Cu2O/Bi2MoO6 photocatalysts with Z-type heterojunction were prepared by hydrothermal method. The morphology, structural properties, and photoelectrochemical properties of the catalyst were characterized by scanning electron microscopy, powder X-ray diffraction, IR spectroscopy, UV-Vis absorption spectroscopy, etc. The photocatalytic properties were investigated by tetracycline (TC) degradation. The experimental results showed that the photocatalytic performance of the composite was enhanced by adding Cu2O. Among them, 20% Cu2O/Bi2MoO6 composite (The mass ratio of Cu2O and Bi2MoO6 was 20%.) exhibited the best degradation efficiency and 95% of TC was degraded within 100 min. The possible mechanism of photocatalytic degradation of TC by the Cu2O/Bi2MoO6 composite was analyzed through free radical capture experiments and band structure analysis. The absorption of visible light is enhanced by the synergistic effect between Cu2O and Bi2MoO6 and the transfer pathway of electrons is changed by the constructed Z-type heterojunction. Thus, the separation efficiency of the electron-hole is improved and the photocatalytic activity is enhanced significantly.
  • 加载中
    1. [1]

      JIANG H L. Research progress on the application of photocatalysis in environmental pollutant treatment[J]. Resources Economization & Environmental Protection, 2021,3:130-131.  

    2. [2]

      ZHOU X, FENG T, GAO S T, YANG L L, WANG Z C, WANG N, LIU C Y, FENG C, SHANG N Z, WANG C. Visible-light responsive photocatalyst Ag/AgCl@NH2-UiO-66: Preparation and photocatalytic performance[J]. Chinese J. Inorg. Chem., 2016,32(5):769-776.  

    3. [3]

      YANG B Y, LI H, SHANG N Z, FENG C, GAO S T, WANG C. Visible-light responsive photocatalyst g-C3N4@BiOCl with hollow flower-like structure: Preparation and photocatalytic performance[J]. Chinese J. Inorg. Chem., 2017,33(3):396-404.  

    4. [4]

      Gao S T, Liu W H, Shao N Z, Feng C, Wu Q H, Wang Z, Wang C. Integration of a plasmonic semiconductor with a metal-organic framework: A case of Ag/AgCl@ZIF-8 with enhanced visible light photocatalytic activity[J]. RSC Adv., 2014,4:61736-61742. doi: 10.1039/C4RA11364K

    5. [5]

      Gao S T, Feng T, Feng C, Shang Z N, Wang C. Novel visible-light-responsive Ag/AgCl@MIL-101 hybrid materials with synergistic photocatalytic activity[J]. J. Colloid Interface Sci., 2016,466(15):284-290.

    6. [6]

      Wang W H, Gao W, Nie X H, Liu W H, Cheng X, Shang N Z, Gao S T, Wang C. Photocatalytic selective amines oxidation coupled with H2O2 production over hyper-cross-linked polymers[J]. J. Colloid Interface Sci., 2022,616(15):1-11.

    7. [7]

      Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev., 2009,38(1):253-278.

    8. [8]

      Chen X B, Shen S H, Guo L J. Semiconductor-based photocatalytic hydrogen generation[J]. Chem. Rev., 2010,110(11):6503-6570.

    9. [9]

      Hao X Q, Jin Z L, Yang H, Lu G X, Bi Y P. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution[J]. Appl. Catal. B-Environ., 2017,210:45-56.

    10. [10]

      Shi L, Wang T, Zhang H B, Chang K, Ye J H. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction[J]. Adv. Funct. Mater., 2015,25(33):5360-5367.

    11. [11]

      Kush P, Deori K, Kumar A, Deka S. Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr􀃱 by surfactant free hydrophilic Cu2ZnSnS4 nanoparticles[J]. J. Mater. Chem. A, 2015,3(15):8098-8106.

    12. [12]

      Toe C Y, Zheng Z K, Wu H, Scott J, Amal R, Ng Y H. Photocorrosion of cuprous oxide in hydrogen production: Rationalizing self-oxidation or self-reduction[J]. Angew. Chem. Int. Ed., 2018,57(41):13613-13617.

    13. [13]

      Huang W C, Lyu L M, Yang Y C, Michael H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity[J]. J. Am. Chem. Soc., 2012,134(2):1261-1267.

    14. [14]

      CAI Q W, LÜ Y, ZHANG Z, LI W, LIU F, WANG Y Q, LIU C S. Photodegradation of refractory organic compounds by Cu2O@ZnO composite photocatalyst[J]. China Environmental Science, 2019,39(7):2822-2830.  

    15. [15]

      Wang W, Feng H M, Liu J G, Zhang M T, Liu S A, Feng C, Chen S G. A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability[J]. Chem. Eng. J., 2020,386124116.

    16. [16]

      Zhao Q, Wang J L, Li Z P, Guo Y, Tang B H, Abudula A, Guan G. Two-dimensional Ti3C2TX-nanosheets/Cu2O composite as a high-performance photocatalyst for decomposition of tetracycline[J]. Carbon Resources Convers., 2021,4:197-204.

    17. [17]

      Niu J, Song Z L, Gao X, Ji Y, Zhang Y L. Construction of Bi2WO6 composites with carbon-coated Cu2O for effective degradation of tetracycline[J]. J. Alloy. Compd., 2021,884(5)161292.

    18. [18]

      Zhao Q, Wang J L, Li Z P, Guo Y, Wang J, Tang B, Abudula A, Guan G Q. Heterostructured graphitic-carbon-nitride-nanosheets/copper(Ⅰ) oxide composite as an enhanced visible light photocatalyst for decomposition of tetracycline antibiotics[J]. Sep. Purif. Technol., 2020,250(1)117238.

    19. [19]

      Sekar K, Chuaicham C, Vellaichamy B, Li W, Zhuang W, Lu X H, Ohtani B, Sasaki K. Cubic Cu2O nanoparticles decorated on TiO2 nanofiber heterostructure as an excellent synergistic photocatalyst for H2 production and sulfamethoxazole degradation[J]. Appl. Catal. B-Environ., 2021,294(5)120221.

    20. [20]

      LI R, YAN X F, YU L M, DONG L, FENG Y Z. Dependence of micro/nano-Cu2O structures: Controlled morphology synthesis, and photocatalytic and antifouling property[J]. Chinese J. Inorg. Chem., 2014,30(10):2258-2269.  

    21. [21]

      JING T, DAI Y. Development of solid solution photocatalytic materials[J]. Acta Phys.-Chim. Sin., 2017,33(2):295-304.  

    22. [22]

      ZHOU X, ZHANG Z, CHEN P, YANG S J, YANG Y. Preparation and photocatalytic degradation performance of Br-doped Bi2WO6 microsphere[J]. Chinese J. Inorg. Chem., 2022,38(9):1716-1728.  

    23. [23]

      Shimodaira Y, Kato H, Kobayashi H, Kudo A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J]. J. Phys. Chem. B, 2006,110(36):17790-17797.

    24. [24]

      ZHANG Z, ZOU C T, YANG S J. Fabrication of semiconductor composite materials based on bismuth tungstate/molybdate and their application in photocatalytic degradation[J]. Prog. Chem., 2020,32(9):1427-1436.  

    25. [25]

      ZHANG X Y, CHEN P, ZHAO Y X, LI X J, YANG S J, YANG Y. Construction and photocatalytic properties of MOF-808/Bi2MoO6 composites[J]. Chinese J. Inorg. Chem., 2023,39(5):805-814.  

    26. [26]

      HU F X, DAI Y, YU G Y. Preparation and photocatalytic activity of cerium oxide/bismuth molybdate composite photocatalyst[J]. Chinese J. Inorg. Chem., 2019,35(3):433-441.  

    27. [27]

      Zhou Y, Xiang M H, Zhang J, Yao T T, Zhou Y H. Fabrication and mechanism of a novel photocatalyst UiO-66-NH2(Zr)/Bi2MoO6 heterojunction toward enhanced pollutant photodegradation[J]. J. Mater. Sci.-Mater. Electron., 2022,33:25950-25963.

    28. [28]

      Shen H D, Fu F, Xue W W, Yang X X, Ajmal S, Zhen Y Z, Guo L, Wang D J, Chi R. In situ fabrication of Bi2MoO6/Bi2MoO6-x homojunction photocatalyst for simultaneous photocatalytic phenol degradation and Cr􀃱 reduction[J]. J. Colloid Interface Sci., 2021,599:741-751.

    29. [29]

      Wang S Y, Ding X, Zhang X H, Pang H, Hai X, Zhan G M, Zhou W, Song H, Zhang L Z, Chen H, Ye J H. In situ carbon homogeneous doping on ultrathin bismuth molybdate: A dual-purpose strategy for efficient molecular oxygen activation[J]. Adv. Funct. Mater., 2017,27(47)1703923.

    30. [30]

      Wu J, Sun Y Y, Gu C H, Wang T, Xin Y J, Chai C, Cui C Y, Ma D. Pt supported and carbon coated Bi2MoO6 composite for enhanced 2,4-dibromophenol degradation under visible-light irradiation: Insight into band gap structure and photocatalytic mechanism[J]. Appl. Catal. B-Environ., 2018,237(5):622-632.

    31. [31]

      Jing K Q, Xiong J H, Qin N, Song Y J, Li L Y, Yu Y, Liang S J, Wu L. Development and photocatalytic mechanism of monolayer Bi2MoO6 nanosheets for the selective oxidation of benzylic alcohols[J]. Chem. Commun., 2017,53(61):8604-8607.

    32. [32]

      Yi J H, Zeng H X, Lin H, Li M H, Xie R K, Chen B F, Ding R S, Liu Z H, Li D H, Li N. Fabrication of direct Z-scheme Ag2O/Bi2MoO6 heterostructured microsphere with enhanced visible-light photocatalytic activity[J]. J. Alloy. Compd., 2023,935(P2)168151.

    33. [33]

      Wu L X, Hu J, Sun C, Jiao F P. Construction of Z-scheme CoAl-LDH/Bi2MoO6 heterojunction for enhanced photocatalytic degradation of antibiotics in natural water bodies[J]. Process Saf. Environ. Protect., 2022,168:1109-1119.

    34. [34]

      Zhang G X, Fang J G, Xu H R, Hu J M. Construction of Bi2MoO6/g-C3N4 heterostructures with enhanced visible light photocatalytic performance[J]. New J. Chem., 2021,45(43):20402-20409.

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(0)
  • Abstract views(79)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return