Citation: Yi YANG, Shuang WANG, Wendan WANG, Limiao CHEN. Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434 shu

Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst

  • Corresponding author: Limiao CHEN, chenlimiao@csu.edu.cn
  • Received Date: 20 November 2023
    Revised Date: 21 March 2024

Figures(8)

  • A Z-scheme heterojunction photocatalyst Ag - Cu2 O/BiVO4 was successfully constructed with effective charge carrier separation/transfer by uniformly encapsulating Cu2O nanospheres and Ag nanoparticles on the surface of decahedral BiVO4 using a simple chemical reduction deposition strategy. The photo-reduction of carbon dioxide reaction result indicated that the as - prepared Ag - Cu2O/BiVO4 heterostructure exhibited excellent activity of photo-reduction CO2 with the CO yield of 5.37 μmol·g-1·h-1, about 35.8 times and 6.25 times of original BiVO4 and Cu2O, respectively. Ag-Cu2O/BiVO4 was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy dispersive X - ray spectroscopy (EDS), UV - Vis diffuse reflectance absorption spectra (UV - Vis DRS), photoluminescence (PL) spectra, transient photocurrent responses (TPC), and electrochemical impedance spectroscopy (EIS), and the possible reaction mechanism for the reduction of CO2 in the photocatalytic system was proposed.
  • 加载中
    1. [1]

      Lingampalli S R, Ayyub M M, Rao C N. Recent progress in the photocatalytic reduction of carbon dioxide[J]. ACS Omega, 2017,2(6):2740-2748. doi: 10.1021/acsomega.7b00721

    2. [2]

      Boumis G, Moftakhari H R, Morakhani H. Coevolution of extreme sea levels and sea-level rise under global warming[J]. Earths Future, 2023,11(7)e2023EF003649. doi: 10.1029/2023EF003649

    3. [3]

      Recent progress on the development of g-C3N4 based composite material and their photocatalytic application of CO2 reductions. J. Environ. Chem. Eng., 2023, 11(3): 109727

    4. [4]

      He R F, Zhang D D, Xu G R, Li C P, Bai J. Immobilized BiCl3@Bi@g-C3N4 on one-dimensional multi-channel carbon fibers as heterogeneous catalyst for efficient CO2 cycloaddition reaction[J]. Inorg. Chem. Front., 2020,7(15):2783-2790. doi: 10.1039/D0QI00207K

    5. [5]

      Mohamed A G A, Zhou E B, Zeng Z P, Xie J F, Gao D F, Wang Y B. Asymmetric oxo-bridged ZnPb bimetallic electrocatalysis boosting CO2-to-HCOOH reduction[J]. Adv. Sci., 2021,9(4)2104138.

    6. [6]

      Ly N H, Vasseghian Y, Joo S W. Plasmonic photocatalysts for enhanced solar hydrogen production: A comprehensive review[J]. Fuel, 2023,344128087. doi: 10.1016/j.fuel.2023.128087

    7. [7]

      Yang G, Qiu P, Xiong J Y, Zhu X T, Cheng G. Facilely anchoring Cu2O nanoparticles on mesoporous TiO2 nanorods for enhanced photocatalytic CO2 reduction through efficient charge transfer[J]. Chinese. Chem. Lett., 2022,33(8):3709-3712. doi: 10.1016/j.cclet.2021.10.047

    8. [8]

      Hiragond C B, Biswas S, Powar N S, Lee J, Gong E, Kim H, Kin H S, Jung J W, Cho C H, Wong B M, In S L. Surface-modified Ag@Ru-P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid-gas interface[J]. Carbon Energy, 2023,2386.

    9. [9]

      Wang C C, Wang X, Liu W. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review[J]. Chinese. Chem., 2020,391123601.

    10. [10]

      Ostad M I, Shahrak M N, Galli F. Photocatalytic carbon dioxide reduction to methanol catalyzed by ZnO, Pt, Au, and Cu nanoparticles decorated zeolitic imidazolate framework-8[J]. J. CO2 Util., 2021,43101373. doi: 10.1016/j.jcou.2020.101373

    11. [11]

      Li R, Zhang W, Zhou K. Metal-organic-framework-based catalysts for photoreduction of CO2[J]. Adv. Mater., 2018,30(35)1705512. doi: 10.1002/adma.201705512

    12. [12]

      Wang J P, Yu Y, Cui J Y, Li X R, Zhang Y L, Wang C, Yu X L, Ye J H. Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction[J]. Appl. Catal. B-Environ., 2022,301120814. doi: 10.1016/j.apcatb.2021.120814

    13. [13]

      Karthikeyan C, Arunachalam P, Ramachandran K, Al-Mayouf A M, Karuppuchamy S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications[J]. J. Alloy. Compd., 2020,828154281. doi: 10.1016/j.jallcom.2020.154281

    14. [14]

      Jourshabani M, Lee B K, Shariatinia Z. From traditional strategies to Z-scheme Configuration in graphitic carbon nitride photocatalysts: Recent progress and future challenges[J]. Appl. Catal. B - Environ., 2020,2761119157.

    15. [15]

      Behera A, Kar A K, Srivastava R. Challenges and prospects in the selective photoreduction of CO2 to C1 and C2 products with nanostructured materials: A review[J]. Mater. Horizons, 2021,9(2):607-639.

    16. [16]

      Nguyen T D, Nguyen V H, Nanda S, Vo D V N, Nguyen V H, Tran T V, Nong L X, Nguyen T T, Bach L G, Abdullah B, Hong S S, Nguyen T V. BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: A review[J]. Environ. Chem. Lett., 2020,18:1779-1801. doi: 10.1007/s10311-020-01039-0

    17. [17]

      Ye L Q, Deng Y, Wang L, Xie H Q, Su F Y. Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion[J]. ChemSusChem, 2019,12(16):3671-3701. doi: 10.1002/cssc.201901196

    18. [18]

      Sun M D, Zhang Z M, Shi Q J, Yang J L, Xie M Z, Han W H. Toward photocatalytic hydrogen generation over BiVO4 by controlling particle size[J]. Chinese Chem. Lett., 2021,32(8):2419-2422. doi: 10.1016/j.cclet.2021.01.013

    19. [19]

      Akrami S, Murakami Y, Watanabe M, Ishihara T, Arita M, Guo Q X, Fuji M, Edalati K. Enhanced CO2 conversion on highly-strained and oxygen-deficient BiVO4 photocatalyst[J]. Chem. Eng. J., 2022,442(2)136209.

    20. [20]

      Hooda A, Rawat P, Vaya D. Insight into the synthesis and photocatalytic applications of bismuth vanadate-based nanocomposites[J]. Curr. Nanosci., 2023,19(5):697-714. doi: 10.2174/1573413718666220509130006

    21. [21]

      Geng J G, Gou S X, Zou Z Z, Zhang D, Yan X T, Ning X F, Fan X J. 0D/2D CeO2/BiVO4 S-scheme photocatalyst for production of solar fuels from CO2[J]. Fuel, 2023,333126417. doi: 10.1016/j.fuel.2022.126417

    22. [22]

      Zalfani M, Hu Z Y, Yu W B, Mahdouani M, Bourguiga R, Wu M, Li Y, Tendeloo G V, Djaoued Y, Su B L. BiVO4/3DOM TiO2 nanocomposites: Effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants[J]. Appl. Catal. B-Environ., 2017,205:121-132. doi: 10.1016/j.apcatb.2016.12.019

    23. [23]

      Liapun V, Hanif M B, Sihor M, Vislocha , Pandiaraj S, Unnikrishnan V K, Thirunavukkarasu G K, Edelmannova M F, Reli M, Monfort O, Kocl K, Motola M. Versatile application of BiVO4/TiO2 S-scheme photocatalyst: Photocatalytic CO2 and Cr(Ⅵ) reduction[J]. Chemosphere, 2023,337139397. doi: 10.1016/j.chemosphere.2023.139397

    24. [24]

      Das R, Sarkar S, Kumar R, Ramarao S D, Cherevotan A, Jasil M, Vinod C P, Singh A K, Peter S C. Noble-metal-free heterojunction photocatalyst for selective CO2 reduction to methane upon induced strain relaxation[J]. ACS Catal., 2022,12(1):687-697. doi: 10.1021/acscatal.1c04587

    25. [25]

      Zhao W, Feng Y, Huang H B, Zhou P C, Li J, Zhang L L, Dai B L, Xu J M, Zhu F X, Sheng N, Leung D Y C. A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism[J]. Appl. Catal. B-Environ., 2019,245:448-458. doi: 10.1016/j.apcatb.2019.01.001

    26. [26]

      Mohammed A M, Mohtar S S, Aziz F, Mhamad S A, Aziz M. Review of various strategies to boost the photocatalytic activity of the cuprous oxide-based photocatalyst[J]. J. Environ. Chem. Eng., 2021,9(2)105138. doi: 10.1016/j.jece.2021.105138

    27. [27]

      Li X, Wan J Q, Ma Y W, Wang Y, Li X T. Study on cobalt-phosphate (Co-Pi) modified BiVO4/Cu2O photoanode to significantly inhibit photochemical corrosion and improve the photoelectrochemical performance[J]. Chem. Eng. J., 2021,404127054. doi: 10.1016/j.cej.2020.127054

    28. [28]

      Zhang Y H, Liu M M, Chen J L, Fang S M, Zhou P P. Recent advances in Cu2O-based composites for photocatalysis: A review[J]. Dalton Trans., 2021,50(12):4091-4111. doi: 10.1039/D0DT04434B

    29. [29]

      Manuel A P, Shankar K. Hot electrons in TiO2-noble metal nano-heterojunctions: Fundamental science and applications in photocatalysis[J]. Nanomaterials, 2021,11(5)1249. doi: 10.3390/nano11051249

    30. [30]

      Zhang F, Li Y H, Qi M Y, Tang Z R, Xu Y J. Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction[J]. Appl. Catal. B-Environ., 2020,268118380. doi: 10.1016/j.apcatb.2019.118380

    31. [31]

      Li D, Zhou C J, Shi X L, Zhang Q, Song Q, Zhou Y M, Jiang D L. PtAg alloys as an efficient co-catalyst for CO2 deep photoreduction with H2O: Synergistic effects of Pt and Ag[J]. Appl. Surf. Sci., 2022,598153843. doi: 10.1016/j.apsusc.2022.153843

    32. [32]

      Belessiotis G V, Kontos A G. Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives[J]. Renew. Energy, 2022,195:497-515. doi: 10.1016/j.renene.2022.06.044

    33. [33]

      Zhang W H, Mohamed A R, Ong W J. Z-Scheme photocatalytic systems for carbon dioxide reduction: Where are we now?[J]. Angew. Chem. Int. Ed., 2020,59(51):22894-22915. doi: 10.1002/anie.201914925

    34. [34]

      SONG Y Y, HUANG L, LI Q S, CHEN L M. Preparation of CuO/BiVO4 photocatalyst and research on carbon dioxide reduction[J]. Chem. J. Chinese Universities, 2022,43(6):151-159.  

    35. [35]

      Li M L, Zhang L X, Fan X Q, Zhou Y J, Wu M Y, Shi J L. Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light[J]. J. Mater. Chem. A, 2015,3:5189-5196. doi: 10.1039/C4TA06295G

    36. [36]

      Zhang Y F, Sun H R, Gao F X, Han Q Z, Li J, Fang M, Cai Y W, Hu B W, Tan X L, Wang X K. Insights into photothermally enhanced photocatalytic U (Ⅵ) extraction by a step-scheme heterojunction[J]. Research, 2022(10)9790320.

    37. [37]

      Chang J P, Wang C Y, Hsu Y J, Wang C Y. Cu2O/UiO-66-NH2 composite photocatalysts for efficient hydrogen production from ammonia borane hydrolysis[J]. Appl. Catal. A-Gen., 2023,650119005. doi: 10.1016/j.apcata.2022.119005

    38. [38]

      Subhan M A, Saha P C, Hossain M A, Alam M M, Asiri A M, Rahman M M, Mamun M A, Rifat T P, Raihan T, Azad A K. Photocatalysis, photoinduced enhanced anti-bacterial functions and development of a selective m-tolyl hydrazine sensor based on mixed Ag-NiMn2O4 nanomaterials[J]. RSC Adv., 2020,10:30603-30619. doi: 10.1039/D0RA05008C

    39. [39]

      Wang W Z, Zhang W W, Meng S, Jia L J, Tan M, Hao C C, Liang Y J, Wang J, Zou B. Enhanced photoelectrochemical water splitting and photocatalytic water oxidation of Cu2O nanocube-loaded BiVO4 nanocrystal heterostructures[J]. Electron. Mater. Lett., 2016,12(6):753-760. doi: 10.1007/s13391-016-6224-9

    40. [40]

      Duan Z Y, Zhao X J, Wei C W, Chen L M. Ag-Bi/BiVO4 chain-like hollow microstructures with enhanced photocatalytic activity for CO2 conversion[J]. Appl. Catal. A-Gen., 2020,594117459. doi: 10.1016/j.apcata.2020.117459

    41. [41]

      Deng Y C, Tang L, Zeng G M, Feng C Y, Dong H R, Wang J J, Feng H P, Liu Y N, Zhou Y Y, Pang Y. Plasmonic resonance excited dual Z-scheme BiVO4/Ag/Cu2O nanocomposite: Synthesis and mechanism for enhanced photocatalytic performance in recalcitrant antibiotic degradation[J]. Environ. Sci.-Nano, 2017,4(7):1494-1511. doi: 10.1039/C7EN00237H

    42. [42]

      Nogueira A E, Oliveira J A, Silva G, Ribeiro C. Insights into the role of CuO in the CO2 photoreduction process[J]. Sci. Rep., 2019,91316. doi: 10.1038/s41598-018-36683-8

    43. [43]

      He Z M, Xia Y M, Tang B, Jiang X F, Su J B. Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites[J]. Mater. Lett., 2016,184:148-151. doi: 10.1016/j.matlet.2016.08.020

    44. [44]

      Rao F, Zhu G, Zhang W, Xu Y, Cao B, Shi X, Hojamberdiev M. Maximizing the formation of reactive oxygen species for deep oxidation of NO via manipulating the oxygen-vacancy defect position on (BiO)2CO3[J]. ACS Catal., 2021,11:7735-7749. doi: 10.1021/acscatal.1c01251

    45. [45]

      Duan Z Y, Zhao X J, Chen L M. BiVO4/Cu0.4V2O5 composites as a novel Z-scheme photocatalyst for visible-light-driven CO2 conversion[J]. J. Environ. Chem. Eng., 2021,9(1)104628. doi: 10.1016/j.jece.2020.104628

    46. [46]

      Lee C, Shin K, Lee Y J, Jung C, Lee H M. Effects of shell thickness on Ag-Cu2O core-shell nanoparticles with bumpy structures for enhancing photocatalytic activity and stability[J]. Catal. Today, 2018,303:313-319. doi: 10.1016/j.cattod.2017.08.016

    47. [47]

      Zhang L, Blom D A, Wang H. Au-Cu2O core-shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties[J]. Chem. Mater., 2011,23:4587-459. doi: 10.1021/cm202078t

    48. [48]

      Li S P, Hasan N, Ma H X, Zhu G Q, Pan L K, Zhang F H, Son M, Liu C L. Hierarchical V2O5/ZnV2O6 nanosheets photocatalyst for CO2 reduction to solar fuels[J]. Chem. Eng. J., 2022,430132863. doi: 10.1016/j.cej.2021.132863

    49. [49]

      Min S X, Wang F, Jin Z L, Xu J. Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation[J]. Superlattice Microstruct., 2014,74:294-307. doi: 10.1016/j.spmi.2014.07.003

    50. [50]

      Wang Q, Cao X X, Liu T, Wu K J, Deng J, Chen J S, Cai Y J, Shen M Q, Yu C, Wang W K. Microfluidic assembly of WO3/MoS2 Z-scheme heterojunction as tandem photocatalyst for nitrobenzene hydrogenation[J]. Rare Metals, 2023,42(2):484-494. doi: 10.1007/s12598-022-02169-w

    51. [51]

      Yang G, Qiu P, Xiong J Y, Zhu X T, Cheng G. Facilely anchoring Cu2O nanoparticles on mesoporous TiO2 nanorods for enhanced photocatalytic CO2 reduction through efficient charge transfer[J]. Chin. Chem. Lett., 2022,33(8):3709-3712. doi: 10.1016/j.cclet.2021.10.047

    52. [52]

      Zhang Z Y, Li A, Cao S W, Bosman M, Li S Z, Xue C. Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers[J]. Nanoscale, 2014,6(10):5217-5222. doi: 10.1039/C3NR06562F

    53. [53]

      Wang J C, Zhang Y, Bai J, Li J H, Zhou C H, Li L, Xie C Y, Zhou T S, Zhu H, Zhou B X. Ni doped amorphous FeOOH layer as ultrafast hole transfer channel for enhanced PEC performance of BiVO4[J]. J. Colloid Interface Sci., 2023,644:509-518. doi: 10.1016/j.jcis.2023.03.162

    54. [54]

      Wei Q, Wang Y, Qin H Y, Wu J M, Lu Y F, Chi H Z, Yang F, Zhou B, Yu H L, Liu J B. Construction of rGO wrapping octahedral Ag-Cu2O heterostructure for enhanced visible light photocatalytic activity[J]. Appl. Catal. B-Environ., 2018,227:132-144. doi: 10.1016/j.apcatb.2018.01.003

    55. [55]

      Zhang L Y, Zhang J J, Yu H G, Yu J G. Emerging S-scheme photocatalyst[J]. Adv. Mater., 2021,33(11)7668.

    56. [56]

      Li J W, Guo J S, Zhang J X, Sun Z L, Gao J P. Surface etching and photodeposition nanostructures core-shell Cu2O@CuO-Ag with S-scheme heterojunction for high efficiency photocatalysis[J]. Surf. Interfaces, 2022,34102308. doi: 10.1016/j.surfin.2022.102308

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(2)
  • Abstract views(57)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return