-
[1]
Bateman D N, Dear J W. Acetylcysteine in paracetamol poisoning: A perspective of 45 years of use[J]. Toxicology,
2019,8(4):489-498.
doi: 10.1039/C9TX00002J
-
[2]
McCrae J C, Morrison E E, Maclntyre I M, Dear J W, Webb D J. Long-term adverse effects of paracetamol—A review[J]. Br. J. Clin. Pharmacol.,
2018,84(10):2218-2230.
doi: 10.1111/bcp.13656
-
[3]
Wang P, Yuan X X, Cui Z, Xu C Y, Sun Z L, Li J H, Liu J S, Tian Y, Li H D. A nanometer-sized graphite/boron-doped diamond electrochemical sensor for sensitive detection of acetaminophen[J]. ACS Omega,
2021,6(9):6326-6334.
doi: 10.1021/acsomega.0c06141
-
[4]
Fan Y, Liu J H, Lu H T, Zhang Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode[J]. Colloid Surf. B-Biointerfaces,
2011,85(2):289-292.
doi: 10.1016/j.colsurfb.2011.02.041
-
[5]
Chen Y X, Wu X, Huang K J. A sandwich-type electrochemical biosensing platform for microRNA-21 detection using carbon sphere-MoS2 and catalyzed hairpin assembly for signal amplification[J]. Sens. Actuator B-Chem.,
2018,270:179-186.
doi: 10.1016/j.snb.2018.05.031
-
[6]
Wang Y H, He L L, Huang K J, Chen Y X, Wang S Y, Liu Z H, Li D. Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays[J]. Analyst,
2019,144(9):2849-2866.
doi: 10.1039/C9AN00081J
-
[7]
Qin L, Zheng Q M, Hu Q, Dou Y, Ni G, Ye T Q, Zhang M D. Selectively sensing and dye adsorption properties of one Zn(Ⅱ) architecture based on a rigid biphenyltetracarboxylate ligand[J]. J. Solid State Chem.,
2020,284121216.
doi: 10.1016/j.jssc.2020.121216
-
[8]
CHEN X L, LIU L, SHANG L, CAI M, CUI H L, YANG H, WANG J J. A highly sensitive and multi-responsive Zn-MOF fluorescent sensor for detection of Fe3+, 2, 4, 6-trinitrophenol, and ornidazole[J]. Chinese J. Inorg. Chem.,
2022,38(4):735-744.
-
[9]
Chen L Y, Rangan S, Li J, Jiang H F, Li Y W. A molecular Pd(Ⅱ) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C-Cl bond activation[J]. Green Chem.,
2014,16(8):3978-3985.
doi: 10.1039/C4GC00314D
-
[10]
Mohan B, Singh G, Chauhan A, Pombeiro A J, Ren P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection[J]. J. Hazard. Mater.,
2023,453131324.
doi: 10.1016/j.jhazmat.2023.131324
-
[11]
Hu X W, Yin Y H, Liu W, Zhang X W, Zhang H X. Cobalt phosphide nanocage@ferric-zinc mixed-metal phosphide nanotube hierarchical nanocomposites for enhanced overall water splitting[J]. Chin. J. Catal.,
2019,40(7):1085-1092.
doi: 10.1016/S1872-2067(19)63299-7
-
[12]
Ma B L, Guo H, Wang M Y, Li L, Jia X Y, Chen H Q, Xue R, Yang W. Electrocatalysis of Cu-MOF/graphene composite and its sensing application for electrochemical simultaneous determination of dopamine and paracetamol[J]. Electroanalysis,
2019,31(6):1002-1008.
doi: 10.1002/elan.201800890
-
[13]
Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing[J]. Angew. Chem. Int. Ed.,
2017,56(52):16510-16514.
doi: 10.1002/anie.201709558
-
[14]
Sharma A, Lim J, Jeong S, Won S, Seong J, Lee S, Lah M S. Superprotonic conductivity of MOF-808 achieved by controlling the binding mode of grafted sulfamate[J]. Angew. Chem.,
2021,133(26):14455-14459.
doi: 10.1002/ange.202103191
-
[15]
Gao W, Huang H, Zhou A M, Wei H, Liu J P, Zhang X M. Three 3D LnⅢ-MOFs based on a nitro-functionalized biphenyltricarboxylate ligand: Syntheses, structures, and magnetic properties[J]. CrystEngComm,
2020,22(2):267-274.
doi: 10.1039/C9CE01245A
-
[16]
Del Castillo-Velilla I, Sousaraei A, Romero-Muñiz I, Castillo-Blas C, SJ Méndez A, Oropeza F E, Platero-Prats A E. Synergistic binding sites in a metal-organic framework for the optical sensing of nitrogen dioxide[J]. Nat. Commun.,
2023,14(1)2506.
doi: 10.1038/s41467-023-38170-9
-
[17]
Tang J, Liu Y, Hu J Q, Zheng S B, Wang X C, Zhou H P, Jin B K. Co-based metal-organic framework nanopinnas composite doped with Ag nanoparticles: A sensitive electrochemical sensing platform for simultaneous determination of dopamine and acetaminophen[J]. Microchem. J.,
2020,155104759.
doi: 10.1016/j.microc.2020.104759
-
[18]
Liu W L, Ye L H, Liu X F, Yuan L M, Jiang J X, Yan C G. Hydrothermal syntheses, structures and luminescent properties of d10 metal-organic frameworks based on rigid 3, 3', 5, 5'-azobenzenetetracarboxylic acid[J]. CrystEngComm,
2008,10(10):1395-1403.
doi: 10.1039/b806360e
-
[19]
Chen Z F, Zhang Z L, Tan Y H, Tang Y Z, Fun H K, Zhou Z Y, Abrahams B F, Liang H. Coordination polymers constructed by linking metal ions with azodibenzoate anions[J]. CrystEngComm,
2008,10(2):217-231.
doi: 10.1039/B709587B
-
[20]
Lin X, Jia J H, Zhao X B, Thomas K M, Blake A J, Walker G S, Champness N R, Hubberstey P, Schröder M. High H2 adsorption by coordination-framework materials[J]. Angew. Chem.,
2006,118(44):7518-7524.
doi: 10.1002/ange.200601991
-
[21]
Zhang R J, Wang J J, Xu H, Zhu Z H, Zheng T F, Peng Y, Chen J L, Liu S J, Wen H R. Stable CdⅡ-based metal-organic framework as a multiresponsive luminescent sensor for acetylacetone, salicylaldehyde, and benzaldehyde with high sensitivity and selectivity[J]. Cryst. Growth Des.,
2023,23:5564-5570.
doi: 10.1021/acs.cgd.3c00185
-
[22]
(a) Spek A L. PLATON, A multipurpose crystallographic tool. Utrecht University, The Netherlands, 2002.
(b)Spek A L. Single - crystal structure validation with the program PLATON. J. Appl. Crystallogr., 2003, 36: 7-13
-
[23]
Wang X Q, Yang N N, Li Q Q, He F, Yang Y F, Wu B H, Chu J, Zhou A N, Xiong S X. Solvothermal synthesis of flower-string-like NiCo-MOF/MWCNT composites as a high-performance supercapacitor electrode material[J]. J. Solid State Chem.,
2019,277:575-586.
doi: 10.1016/j.jssc.2019.07.019
-
[24]
Zhang J, Ma J L, Zhang S B, Wang W C, Chen Z D. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres[J]. Sens. Actuator B-Chem.,
2015,211:385-391.
doi: 10.1016/j.snb.2015.01.100
-
[25]
Cui H F, Ye J S, Zhang W D, Li C M, Luong J H T, Sheu F S. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites[J]. Anal. Chim. Acta,
2007,594(2):175-183.
doi: 10.1016/j.aca.2007.05.047
-
[26]
Rajendrachari S, Adimule V, Gulen M, Khosravi F, Somashekharappa K K. Synthesis and characterization of high entropy alloy 23Fe-21Cr-18Ni-20Ti-18Mn for electrochemical sensor applications[J]. Materials,
2022,15(21)7591.
doi: 10.3390/ma15217591
-
[27]
Fernández L, Borrás C, Carrero H. Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/anionic surfactants/glassy carbon modified electrode[J]. Electrochim. Acta,
2006,52(3):872-884.
doi: 10.1016/j.electacta.2006.06.021
-
[28]
Kalambate P K, Sanghavi B J, Karna S P, Srivastava A K. Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/Nafion composite modified glassy carbon electrode[J]. Sens. Actuator B-Chem.,
2015,213:285-294.
doi: 10.1016/j.snb.2015.02.090
-
[29]
YANG G W, LI J P. Determination of profenofos by bimetal-organic framework MOF-808 (Zr/Ce) mimic enzyme electrochemical sensor[J]. Chin. J. Anal. Chem.,
2023,51(7):1112-1121.
-
[30]
Shalauddin M, Akhter S, Basirun W J, Lee V S, Marlinda A R, Ahmed S R, Rajabzadeh A R, Srinivasan S. Bimetallic metal organic framework anchored multi-layer black phosphorous nanosheets with enhanced electrochemical activity for paracetamol detection[J]. Electrochim. Acta,
2023,454142423.
doi: 10.1016/j.electacta.2023.142423
-
[31]
Karimi-Maleh H, Yola M L, Atar N, Orooji Y, Karimi F, Kumar P S, Rouhi J, Baghayeri M. A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@ MOF-74 nanocomposite[J]. J. Colloid Interface Sci.,
2021,592:174-185.
doi: 10.1016/j.jcis.2021.02.066
-
[32]
Guo L N, Hao L, Zhang Y F, Yang X M, Wang Q Q, Wang Z, Wang C. Metal-organic framework precursors derived Ni-doping porous carbon spheres for sensitive electrochemical detection of acetaminophen[J]. Talanta,
2021,228122228.
doi: 10.1016/j.talanta.2021.122228
-
[33]
Zahed M A, Barman S C, Toyabur R M, Sharifuzzaman M, Xuan X, Nah J, Park J Y. Ex situ hybridized hexagonal cobalt oxide nanosheets and RGO@ MWCNT based nanocomposite for ultra-selective electrochemical detection of ascorbic acid, dopamine, and uric acid[J]. J. Electrochem. Soc.,
2019,166(6):B304-B311.
doi: 10.1149/2.0131906jes
-
[34]
Shalauddin M, Akhter S, Basirun W J, Lee V S, Johan M R. A metal free nanosensor based on nanocellulose-polypyrrole matrix and single-walled carbon nanotube: Experimental study and electroanalytical application for determination of paracetamol and ciprofloxacin[J]. Environ. Technol.,
2022,18100691.
-
[35]
Wang H Y, Xie A J, Li S J, Wang J J, Chen K X, Su Z L, Song N N, Luo S P. Three-dimensional g-C3N4/MWNTs/GO hybrid electrode as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Anal. Chim. Acta,
2022,1211339907.
doi: 10.1016/j.aca.2022.339907
-
[36]
Jamal R, Liu Y C, Abdurexit A, Sawut N, Yan Y Q, Ali A, Abdiryim T. Electrochemical sensor for detection of paracetamol based on pendent nitrogen heterocyclic ring-functionalized polyterthiophene derivatives[J]. ChemistrySelect,
2021,6(18):4473-4481.
doi: 10.1002/slct.202100065
-
[37]
Manoj D, Rajendran S, Hoang T K, Ansar S, Joo S W, Vasseghian Y, Soto-Moscoso M. In-situ growth of 3D Cu-MOF on 1D halloysite nanotubes/reduced graphene oxide nanocomposite for simultaneous sensing of dopamine and paracetamol[J]. J. Ind. Eng. Chem.,
2022,112:287-295.
doi: 10.1016/j.jiec.2022.05.022
-
[38]
Vinay M M, Nayaka Y A. Iron oxide (Fe2O3) nanoparticles modified carbon paste electrode as an advanced material for electrochemical investigation of paracetamol and dopamine[J]. J. Sci. Adv. Mater. Dev.,
2019,4(3):442-450.
-
[39]
Matt S B, Raghavendra S, Shivanna M, Sidlinganahalli M, Siddalingappa D M. Electrochemical detection of paracetamol by voltammetry techniques using pure zirconium oxide nanoparticle based modified carbon paste electrode[J]. J. Inorg. Organomet. Polym.,
2021,31:511-519.
doi: 10.1007/s10904-020-01743-y
-
[40]
Zhang X, Wang K P, Zhang L N, Zhang Y C, Shen L. Phosphorus-doped graphene-based electrochemical sensor for sensitive detection of acetaminophen[J]. Anal. Chim. Acta,
2018,1036:26-32.
doi: 10.1016/j.aca.2018.06.079
-
[41]
Shalauddin M, Akhter S, Basirun W J, Lee V S, Marlinda A R, Ahmed S R, Rajabzadeh A R, Srinivasan S. Bimetallic metal organic framework anchored multi-layer black phosphorous nanosheets with enhanced electrochemical activity for paracetamol detection[J]. Electrochim. Acta,
2023,454142423.
doi: 10.1016/j.electacta.2023.142423