Citation: Wenlong LI, Xinyu JIA, Jie LING, Mengdan MA, Anning ZHOU. Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421 shu

Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst

Figures(7)

  • To improve the catalytic activity of the photothermal CO2 hydrogenation In2O3 catalyst, a Mg(OH)2-In(OH)3 precursor was prepared by the homogeneous hydrothermal method, and a Mg-doped In2O3-x (Mg-In2O3-x) catalyst enriched with oxygen vacancies was obtained by the following high-temperature calcination and H2-reducing treatment. The catalyst was evaluated for its photothermal catalytic performance of CO2 hydrogenation in a photothermal fixed -bed reactor. The results demonstrated that Mg-In2O3-x achieved an impressive CO2 conversion rate of 31.20% with a CO production rate of 14.22 mmol·gcat-1·h-1 and selectivity of 100% in the light reaction at 300 ℃. The characterization results confirmed that the Mg doping into the In2O3 lattice promotes the formation of more surface oxygen vacancies, which dramatically increases the response efficiency to visible light and slows down the recombination of photogenerated electron-hole. This is the main reason for the enhancement of the photothermal catalytic performance.
  • 加载中
    1. [1]

      Li Y G, Hao J C, Song H, Zhang F Y, Bai X H, Meng X G, Zhang H Y, Wang S F, Hu Y, Ye J H. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation[J]. Nat. Commun., 2019,10(1):4359-4368. doi: 10.1038/s41467-019-12328-w

    2. [2]

      XU L M, HUANG H B, SHEN J H, YOU Q H. Synthesis of Zn-doped BiOBr with enhanced photoreduction CO2 activity under visible light irradiation[J]. Chinese J. Inorg. Chem., 2020,36(12):2395-2403. doi: 10.11862/CJIC.2020.262

    3. [3]

      Merkel T C, Lin H Q, Wei X T, Baker R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes[J]. J. Membr. Sci., 2010,359(1/2):126-139.

    4. [4]

      Assima G P, Larachi F, Molson J, Beaudong G. Comparative study of five Québec ultramafic mining residues for use in direct ambient carbon dioxide mineral sequestration[J]. Chem. Eng. J., 2014,245:56-64. doi: 10.1016/j.cej.2014.02.010

    5. [5]

      Ling J, Zhou A N, Wang W Z, Jia X Y, Ma M D, Li Y Z. One-pot method synthesis of bimetallic MgCu-MOF-74 and its CO2 adsorption under visible light[J]. ACS Omega, 2022,7(23):19920-19929. doi: 10.1021/acsomega.2c01717

    6. [6]

      Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas A A, Wood T E, Li H, Loh J Y Y, Dong Y C, Xia M K, Li Y, Wang S H, Jia J, Qiu C Y, Qian C X, Kherani N P, He L, Zhang X H, Ozin G A. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure[J]. Joule, 2018,2(7):1369-1381. doi: 10.1016/j.joule.2018.03.007

    7. [7]

      DONG Y A, FENG Z, ZHU D R. Syntheses of two Mg-based metalorganic frameworks by a coordination competitive strategy and the selective CO2 capture[J]. Chinese J. Inorg. Chem., 2023,39(1):181-190.  

    8. [8]

      Lingampalli S R, Ayyub M M, Rao C N R. Recent progress in the photocatalytic reduction of carbon dioxide[J]. ACS Omega, 2017,2(6):2740-2748. doi: 10.1021/acsomega.7b00721

    9. [9]

      Ameta R, Panchal S, Ameta N, Ameta S C. Photocatalytic reduction of carbon dioxide[J]. Mater. Sci. Forum, 2013,764:83-96. doi: 10.4028/www.scientific.net/MSF.764.83

    10. [10]

      DUAN F Y, ZHOU A N, CHEN F X, LING J, MA M D, JIA X Y. Controllable preparation and photocatalytic performance of graphitic carbon nitride nanosheets[J]. Journal of the Chinese Ceramic Society, 2021,49(10):2053-2060.  

    11. [11]

      MA M D, ZHOU A N, DUAN F Y, JIA X Y, LING J. Preparation of Ti1Li3Al2-LDHs/g-C3N4 composites and its photocatalytic properties in CO2-toluene reaction system[J]. Acta Materiae Compositae Sinica, 2023,40(3):1522-1533.  

    12. [12]

      XU L L, ZHOU M T, YANG A L, WANG J X, ZHOU T F, ZHANG Y. Preparation of dumbbell-like magnetic gold mesoporous silicon microspheres and determination of magnetic/photo thermo and catalytic performance[J]. Chinese J. Inorg. Chem., 2019,35(6):971-977.  

    13. [13]

      Li Z H, Liu J J, Zhao Y F, Shi R, Waterhouse G I N, Wang Y S, Wu L Z, Tung C H, Zhang T R. Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets[J]. Nano Energy, 2019,60:467-475. doi: 10.1016/j.nanoen.2019.03.069

    14. [14]

      Wang J C, Qiao X, Shi W N, Gao H L, Guo L C. Enhanced photothermal selective conversion of CO2 to CH4 in water vapor over rod-like Cu and N co-doped TiO2[J]. Chin. J. Struct. Chem., 2022,41(12):33-42.

    15. [15]

      Deng B W, Song H, Wang Q, Hong J N, Song S, Zhang Y W, Peng K, Zhang H W, Kako T, Ye J H. Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure[J]. Appl. Catal. B-Environ., 2023,327122471. doi: 10.1016/j.apcatb.2023.122471

    16. [16]

      Qi Y H, Song L Z, Ouyang S X, Liang X C, Ning S B, Zhang Q Q, Ye J H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D Black In2O3-x nanosheets with bifunctional oxygen vacancies[J]. Adv. Mater., 2019,32(6)1903915.

    17. [17]

      Wang S, Wang P F, Qin Z F, Yan W J, Dong M, Li J F, Wang J G, Fan W B. Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite[J]. J. Catal., 2020,391:459-470. doi: 10.1016/j.jcat.2020.09.010

    18. [18]

      Qin B, Zhou Z M, Li S G, Gao P. Understanding the structure-performance relationship of cubic In2O3 catalysts for CO2 hydrogenation[J]. J. CO2 Util., 2021,49101543. doi: 10.1016/j.jcou.2021.101543

    19. [19]

      Tao H C, Fan Q, Ma T, Liu S Z, Gysling H, Texter J, Guo F, Sun Z Y. Two-dimensional materials for energy conversion and storage[J]. Prog. Mater. Sci., 2020,111100637. doi: 10.1016/j.pmatsci.2020.100637

    20. [20]

      Wang L, Dong Y C, Yan T J, Hu Z X, Ali F M, Meira D M, Duchesne P N, Loh J Y Y, Qiu C Y, Storey E E, Xu Y F, Sun W, Ghoussoub M, Kherani N P, Helmy A S, Ozin G A. Black indium oxide a photothermal CO2 hydrogenation catalyst[J]. Nat. Commun., 2020,11(1)2432. doi: 10.1038/s41467-020-16336-z

    21. [21]

      Yang Y X, Pan Y X, Tu X, Liu C J. Nitrogen doping of indium oxide for enhanced photocatalytic reduction of CO2 to methanol[J]. Nano Energy, 2022,101107613. doi: 10.1016/j.nanoen.2022.107613

    22. [22]

      Zhu X W, Yang J M, Zhu X L, Yuan J J, Zhou M, She X J, Yu Q, Song Y H, She Y B, Hua Y J, Li H M, Xu H. Exploring deep effects of atomic vacancies on activating CO2 photoreduction via rationally designing indium oxide photocatalysts[J]. Chem. Eng. J., 2021,422129888. doi: 10.1016/j.cej.2021.129888

    23. [23]

      Zheng M, Liu J N, Xiao X D, Wang H L, Jiang B J, Li Q, Liu M, Zhao C, Zhang L P, Zhou J. Creation of Mo active sites on indium oxide microrods for photocatalytic amino acid production[J]. Sci. China Mater., 2021,65(5):1285-1293.

    24. [24]

      Sil A, Deck M J, Goldfine E A, Zhang C, Patel S V, Flynn S, Liu H Y, Chien P H, Poeppelmeier K R, Dravid V P, Bedzyk M J, Medvedeva J E, Hu Y Y, Facchetti A, Marks T J. Fluoride doping in crystalline and amorphous indium oxide semiconductors[J]. Chem. Mat., 2022,34(7):3253-3266. doi: 10.1021/acs.chemmater.2c00053

    25. [25]

      YANG F F, ZHAO S X, ZHOU W, NI Z H. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol[J]. CIESC J., 2023,74(6):3366-3374.  

    26. [26]

      Qi Y H, Jiang J W, Liang X C, Ouyang S X, Mi W B, Ning S B, Zhao L, Ye J H. Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation[J]. Adv. Funct. Mater., 2021,31(22)2100908. doi: 10.1002/adfm.202100908

    27. [27]

      Das A, Liu D Y, Wary R R, Vasenko A S, Prezhdo O V, Nair R G. Enhancement of photocatalytic and photoelectrochemical performance of ZnO by Mg doping: Experimental and density functional theory insights[J]. J. Phys. Chem. Lett., 2023,14(18):4134-4141. doi: 10.1021/acs.jpclett.3c00736

    28. [28]

      Wang J, Sun K Y, Jia X Y, Liu C J. CO2 hydrogenation to methanol over Rh/In2O3 catalyst[J]. Catal. Today, 2021,365:341-348. doi: 10.1016/j.cattod.2020.05.020

    29. [29]

      Guo C F, Li L, Chen F, Ning J Q, Zhong Y J, Hu Y. One-step phosphorization preparation of gradient-P-doped CdS/CoP hybrid nanorods having multiple channel charge separation for photocatalytic reduction of water[J]. J. Colloid Interface Sci., 2021,596:431-441. doi: 10.1016/j.jcis.2021.03.170

    30. [30]

      Li R, Sun L M, Zhan W W, Li Y A, Wang X J, Han X G. Engineering an effective noble-metal-free photocatalyst for hydrogen evolution: Hollow hexagonal porous micro-rods assembled from In2O3@carbon core-shell nanoparticles[J]. J. Mater. Chem. A, 2018,6(32):15747-15754. doi: 10.1039/C8TA04916E

    31. [31]

      Shen C Y, Sun K H, Zhang Z T, Rui N, Jia X Y, Mei D H, Liu C J. Highly active Ir/In2O3 catalysts for selective hydrogenation of CO2 to methanol: Experimental and theoretical studies[J]. ACS Catal., 2021,11(7):4036-4046. doi: 10.1021/acscatal.0c05628

    32. [32]

      Fan Y J, Wu S F. A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol[J]. J. CO2 Util., 2016,16:150-156. doi: 10.1016/j.jcou.2016.07.001

    33. [33]

      Rui N, Wang Z Y, Sun K H, Ye J Y, Ge Q F, Liu C J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl. Catal. B-Environ., 2017,218:488-497. doi: 10.1016/j.apcatb.2017.06.069

    34. [34]

      Jia X Y, Sun K H, Wang J, Shen C Y, Liu C J. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. J. Energy Chem., 2020,50:409-415. doi: 10.1016/j.jechem.2020.03.083

    35. [35]

      Yan T J, Li N, Wang L L, Ran W G, Duchesne P N, Wan L L, Nguyen N T, Wang L, Xia M K, Ozin G A. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation[J]. Nat. Commun., 2020,11(1)6095. doi: 10.1038/s41467-020-19997-y

    36. [36]

      Chen Y, Li Y G, Luo N D, Shang W K, Shi S S, Li H J, Liang Y D, Zhou A N. Kinetic comparison of photocatalysis with H2O2-free photoFenton process on BiVO4 and the effective antibiotic degradation[J]. Chem. Eng. J., 2022,429132577. doi: 10.1016/j.cej.2021.132577

    37. [37]

      He L, Wood T E, Wu B, Dong Y C, Hoch L B, Reyes L M, Wang D, Kübel C, Qian C X, Jia J, Liao K, Brien P G O', Sandhel A, Loh J Y Y, Szymanski P, Kherani N P, Sum T C, Mims C A, Ozin G A. Spatial separation of charge carriers in In2O3-x(OH)y nanocrystal superstructures for enhanced gas-phase photocatalytic activity[J]. ACS Nano, 2016,10(5):5578-5586. doi: 10.1021/acsnano.6b02346

    38. [38]

      Li L, Guo C F, Shen J L, Ning J Q, Zhong Y J, Hu Y. Construction of sugar-gourd-shaped CdS/Co1-xS hollow hetero-nanostructure as an efficient Z-scheme photocatalyst for hydrogen generation[J]. Chem. Eng. J., 2020,400125925. doi: 10.1016/j.cej.2020.125925

    39. [39]

      Sayed M, Xu F Y, Kuang P Y, Low J X, Wang S Y, Zhang L Y, Yu J G. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres[J]. Nat. Commun., 2021,12(1)4936. doi: 10.1038/s41467-021-25007-6

    40. [40]

      Su T M, Men C Z, Chen L Y, Chu B X, Luo X, Ji H B, Chen J H, Qin Z Z. Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx/ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution[J]. Adv. Sci., 2022,92103715. doi: 10.1002/advs.202103715

    41. [41]

      Yu X Y, Chen Y J, Zhang Q Y, Yin Y J, Sun D, Ru Y X, Tian G H. Carbon and nitrogen co-doped In2O3 porous nanosheets with oxygen vacancies for remarkable photocatalytic CO2 conversion[J]. Surf. Interfaces, 2023,38102789. doi: 10.1016/j.surfin.2023.102789

    42. [42]

      Bai S, Zhang N, Gao C, Xiong Y J. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018,53:296-336. doi: 10.1016/j.nanoen.2018.08.058

    43. [43]

      Pan R R, Liu J, Zhang J T. Defect engineering in 2D photocatalytic materials for CO2 reduction[J]. ChemNanoMat, 2021,7(7):737-747. doi: 10.1002/cnma.202100087

    44. [44]

      Sun K H, Rui N, Zang Z T, Sun Z Y, Ge Q F, Liu C J. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability[J]. Green Chem., 2020,22(15):5059-5066. doi: 10.1039/D0GC01597K

  • 加载中
    1. [1]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    3. [3]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    4. [4]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    8. [8]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    9. [9]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    10. [10]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    11. [11]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    15. [15]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    16. [16]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    17. [17]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    18. [18]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

Metrics
  • PDF Downloads(18)
  • Abstract views(1132)
  • HTML views(255)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return