-
[1]
Jacobson M Z. Review of solutions to global warming, air pollution, and energy security[J]. Energy Environ. Sci.,
2009,2:148-173.
doi: 10.1039/B809990C
-
[2]
Jones W D. Carbon capture and conversion[J]. J. Am. Chem. Soc.,
2020,142:4955-4957.
doi: 10.1021/jacs.0c02356
-
[3]
Zou Y H, Huang Y B, Si D H, Yin Q, Wu Q J, Weng Z X, Cao R. Porous metal-organic framework liquids for enhanced CO2 adsorption and catalytic conversion[J]. Angew. Chem. Int. Ed.,
2021,60(38):20915-20920.
doi: 10.1002/anie.202107156
-
[4]
Li J, Ma Y G, McCarthy M C, Sculley J, Yu J L, Jeong H, Balbuena P B, Zhou H. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks[J]. Coord. Chem. Rev.,
2011,255:1791-1823.
doi: 10.1016/j.ccr.2011.02.012
-
[5]
Wu Q J, Si D H, Sun P P, Dong S Z, Chen Q, Ye S H, Sun D, Cao R, Huang Y B. Atomically precise copper nanoclusters for highly efficient electroreduction of CO2 towards hydrocarbons via breaking the coordination symmetry of Cu site[J]. Angew. Chem. Int. Ed.,
2023,62(36)e2023068.
-
[6]
Liang J, Xie Y Q, Wang X S, Wang Q, Liu T T, Huang Y B, Cao R. An imidazolium-functionalized mesoporous cationic metal-organic framework for cooperative CO2 fixation into cyclic carbonate[J]. Chem. Commun.,
2018,54:342-345.
doi: 10.1039/C7CC08630J
-
[7]
Trickett C A, Helal A, Al-Maythalony B A, Yamani Z H, Cordova K E, Yaghi O M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nat. Rev. Mater.,
2017,2(8)17045.
doi: 10.1038/natrevmats.2017.45
-
[8]
Guo F, Zhang X L. Metal-organic frameworks for the energy-related conversion of CO2 into cyclic carbonates[J]. Dalton Trans.,
2020,49:9935-9947.
doi: 10.1039/D0DT01516D
-
[9]
Tian D W, Liu B Y, Gan Q Y, Li H R, Darensbourg D J. Formation of cyclic carbonates from carbon dioxide and epoxides coupling reactions efficiently catalyzed by robust, recyclable one-component aluminum-salen complexes[J]. ACS Catal.,
2012,2:2029-2035.
doi: 10.1021/cs300462r
-
[10]
Yang H M, Zhang X, Zhang G Y, Fei H H. An alkaline-resistant Ag(Ⅱ)-anchored pyrazolate-based metal-organic framework for chemical fixation of CO2[J]. Chem. Commun.,
2018,54:4469-4472.
doi: 10.1039/C8CC01461B
-
[11]
Liu X H, Ma J G, Niu Z, Yang G M, Cheng P. An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure[J]. Angew. Chem. Int. Ed.,
2015,127:1002-1005.
doi: 10.1002/ange.201409103
-
[12]
Grignard B, Gennen S, Jerome C, Kleij A W. Detrembleur C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers[J]. Chem. Soc. Rev.,
2019,48:4466-4514.
-
[13]
ZHAO D, LIAO Z T, ZHANG W, CHEN Z Z, SUN W Y. Progress in functional metal-organic frameworks for catalytic conversion of carbon dioxide[J]. Chinese J. Inorg. Chem.,
2021,37(7):1153-1176.
-
[14]
Hanusch J M, Kerschgens I P, Huber F, Neuburger M, Gademann K. Pyrrolizidines for direct air capture and CO2 conversion[J]. Chem. Commun.,
2019,55:949-952.
doi: 10.1039/C8CC08574A
-
[15]
Zhang Y M, Li B Y, Williams K, Gao W Y, Ma S Q. A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake[J]. Chem. Commun.,
2013,49:10269-10271.
doi: 10.1039/c3cc45252b
-
[16]
Bae Y, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. Int. Ed.,
2011,50:11586-11596.
doi: 10.1002/anie.201101891
-
[17]
Hudson M R, Queen W L, Mason J A, Fickel D W, Lobo R F, Brown C M. Unconventional, highly selective CO2 adsorption in zeolite SSZ1-3[J]. J. Am. Chem. Soc.,
2012,134:1970-1973.
doi: 10.1021/ja210580b
-
[18]
Gao W Y, Chen Y, Niu Y H, Williams K, Cash L, Perez P J, Wojtas L, Cai J F, Chen Y S, Ma S Q. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions[J]. Angew. Chem. Int. Ed.,
2014,53:2615-2619.
doi: 10.1002/anie.201309778
-
[19]
Xiang S C, He Y B, Zhang Z J, Wu H, Zhou W, Krishna R, Chen B L. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions[J]. Nat. Commun.,
2012,3954.
doi: 10.1038/ncomms1956
-
[20]
Nugent P, Belmabkhout Y, Burd S D, Cairns A J, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko M J. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature,
2013,495:80-84.
doi: 10.1038/nature11893
-
[21]
Lu W, Sculley J P, Yuan D Q, Krishna R, Wei Z W, Zhou H C. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas[J]. Angew. Chem. Int. Ed.,
2012,51:7480-7484.
doi: 10.1002/anie.201202176
-
[22]
Choi J C, He L N, Yasuda H Y, Sakakura T. Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol[J]. Green Chem.,
2002,4:230-234.
doi: 10.1039/b200623p
-
[23]
Xie Y, Wang T T, Liu X H, Zou K, Deng W Q. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer[J]. Nat. Commun.,
2013,41960.
doi: 10.1038/ncomms2960
-
[24]
Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P D, Yaghi O M, Chang C J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science,
2015,349:1208-1213.
doi: 10.1126/science.aac8343
-
[25]
Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides[J]. J. Am. Chem. Soc.,
1999,121:4526-4527.
doi: 10.1021/ja9902165
-
[26]
Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry[J]. Chem. Commun.,
1997,12:1129-1130.
-
[27]
Tang L, Zhang S B, Wu Q L, Wang X R, Wu H, Jiang Z Y. Heterobimetallic metal-organic framework nanocages as highly efficient catalysts for CO2 conversion under mild conditions[J]. J. Mater. Chem. A,
2018,6:2964-2973.
doi: 10.1039/C7TA09082J
-
[28]
Li P Z, Wang X J, Liu J, Lim J S, Zou R Q, Zhao Y L. A triazole-containing metal-organic framework as a highly effective and substrate size-dependent catalyst for CO2 conversion[J]. J. Am. Chem. Soc.,
2016,138:2142-2145.
doi: 10.1021/jacs.5b13335
-
[29]
PAN W, MA C X, ZHOU C J, ZHANG J Y, SHI Y B, XU H, ZHU D R, XIE J L. Synthesis and characterization of metalorganic framework based on 2, 6-bis (4carboxybenzylidene) cyclo-hexanone[J]. Chinese J. Inorg. Chem.,
2021,37(5):953-960.
-
[30]
Song J L, Zhang Z F, Hu S Q, Wu T B, Jiang T, Han B X. MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. Green Chem.,
2009,11:1031-1036.
doi: 10.1039/b902550b
-
[31]
Kim J, Kim S, Jang H G, Seo G, Ahn W. CO2 Cycloaddition of styrene oxide over MOF catalysts[J]. Appl. Catal. A-Gen.,
2013,453175180.
-
[32]
Liang J, Chen R P, Wang X Y, Liu T T, Wang X S, Huang Y B, Cao R. Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides[J]. Chem. Sci.,
2017,8:1570-1575.
doi: 10.1039/C6SC04357G
-
[33]
Xue Z M, Jiang J Y, Ma M G, Li M F, Mu T C. Gadolinium-based metal-organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis[J]. ACS Sustain. Chem. Eng.,
2017,5:2623-2631.
doi: 10.1021/acssuschemeng.6b02972
-
[34]
Parmar B, Patel P, Kureshy R I, Khan N H, Suresh E. Sustainable heterogeneous catalysts for CO2 utilization by using dual ligand ZnⅡ/CdⅡ metal-organic frameworks[J]. Chem.-Eur. J.,
2018,24:15831-15839.
doi: 10.1002/chem.201802387
-
[35]
He H M, Sun Q, Gao W Y, Perman J A, Sun F X, Zhu G S, Aguila B, Forrest K, Space B, Ma S Q. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation[J]. Angew. Chem. Int. Ed.,
2018,57:4657-4662.
doi: 10.1002/anie.201801122
-
[36]
Rani P, Husain A, Bhasin K K, Kumar G. Metal-organic framework-based selective molecular recognition of organic amines and fixation of CO2 into cyclic carbonates[J]. Inorg. Chem.,
2022,61:6977-6994.
doi: 10.1021/acs.inorgchem.2c00367
-
[37]
Sun X D, Gu J M, Yuan Y, Yu C Y, Li J T, Shan H Y, Li G H, Liu Y L. A stable mesoporous Zr-Based metal organic framework for highly efficient CO2 conversion[J]. Inorg. Chem.,
2019,58:7480-7487.
doi: 10.1021/acs.inorgchem.9b00701
-
[38]
Das R, Ezhil T, Nagaraja C M. Design of bifunctional zinc(Ⅱ)-organic framework for efficient coupling of CO2 with terminal/internal epoxides under mild conditions[J]. Cryst. Growth Des.,
2022,22:598-607.
doi: 10.1021/acs.cgd.1c01148
-
[39]
Ma C X, Pan W, Zhang J Y, Zeng X H, Gong C H, Xu H T, Shen R P, Zhu D R, Xie J L. Metal-organic frameworks derived from chalcone dicarboxylic acid: New topological characters and initial catalytic properties[J]. Inorg. Chim. Acta,
2022,543121166.
doi: 10.1016/j.ica.2022.121166
-
[40]
Blatov V A, Ilyushin G D, Blatova O A, Anurova N A, Ivanov-Schits A K, Dem'Yanets L N. Analysis of migration paths in fast-ion conductors with voronoi-dirichlet partition[J]. Acta Crystallogr. Sect. B,
2006,B62:1010-1018.
-
[41]
Liang J, Xie Y Q, Wu Q, Wang X Y, Liu T T, Li H F, Huang Y B, Cao R. Zinc porphyrin/imidazolium integrated multivariate zirconium metal-organic frameworks for transformation of CO2 into cyclic carbonates[J]. Inorg. Chem.,
2018,57:2584-2593.
doi: 10.1021/acs.inorgchem.7b02983
-
[42]
Zhou Z, He C, Xiu J H, Yang L, Duan C Y. Metal-organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides[J]. J. Am. Chem. Soc.,
2015,137:15066-15069.
doi: 10.1021/jacs.5b07925