Citation: Hongdao LI, Shengjian ZHANG, Hongmei DONG. Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411 shu

Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions

  • Corresponding author: Hongdao LI, lihong.dao@163.com
  • Received Date: 30 October 2023
    Revised Date: 24 January 2024

Figures(8)

  • Employing the reaction of chiral nitronyl nitroxide radical and rare-earth ions, two 2p-4f hetero-spin meso complexes [Ln(hfac)3((R)-MePP-Ph-NIT)]2, where Ln=Eu (1) and Dy (2), hfac=hexafluoroacetylacetone; (R)-MePP-Ph-NIT=2-(4-((R)-tert-butyl-2-methylpiperazine-1-carboxylate)phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, have been assembled. In both complexes, two chiral radicals ligate to two Ln(Ⅲ) ions to produce a cyclic dinuclear structure. Complex 1 shows the characteristic fluorescence emission of the Eu(Ⅲ) ion. In complex 2, the frequency-dependent out-of-phase susceptibility signals connected with magnetic relaxation confirm single-molecule magnet (SMM) behavior.
  • 加载中
    1. [1]

      Sessoli R, Gatteschi D, Caneschi A, Novak M A. Magnetic bistability in a metal-ion cluster[J]. Nature, 1993,365:141-143. doi: 10.1038/365141a0

    2. [2]

      Sorace L, Benelli C, Gatteschi D. Lanthanides in molecular magnetism: Old tools in a new field[J]. Chem. Soc. Rev., 2011,40:3092-3104. doi: 10.1039/c0cs00185f

    3. [3]

      Ashebr T G, Li H, Ying X, Li X L, Zhao C, Liu S T, Tang J K. Emerging trends on designing high-performance dysprosium(Ⅲ) single-molecule magnets[J]. ACS Mater. Lett., 2022,4:307-319. doi: 10.1021/acsmaterialslett.1c00765

    4. [4]

      Rinehart J D, Long J R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets[J]. Chem. Sci., 2011,2:2078-2085. doi: 10.1039/c1sc00513h

    5. [5]

      Guo F S, Day B M, Chen Y C, Tong M L, Mansikkamäki A, Layfield R A. Magnetic hysteresis up to 80 Kelvin in a dysprosium metallocene single-molecule magnet[J]. Science, 2018,362:1400-1403. doi: 10.1126/science.aav0652

    6. [6]

      Gould C A, McClain K R, Reta D, Kragskow J G C, Marchiori D A, Lachman E, Choi E S, Analytis J G, Britt R D, Chilton N F, Harvey B G, Long J R. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding[J]. Science, 2022,375:198-202. doi: 10.1126/science.abl5470

    7. [7]

      Demir S, Jeon I R, Long J R, Harris T D. Radical ligand-containing single-molecule magnets[J]. Coord. Chem. Rev., 2015,289:149-176.

    8. [8]

      Sessoli R, Powell A K. Strategies towards single molecule magnets based on lanthanide ions[J]. Coord. Chem. Rev., 2009,253:2328-2341. doi: 10.1016/j.ccr.2008.12.014

    9. [9]

      Li H D, Wu S G, Tong M L. Lanthanide-radical single-molecule magnets: Current status and future challenges[J]. Chem. Commun., 2023,59:6159-6170. doi: 10.1039/D2CC07042A

    10. [10]

      Demir S, Gonzalez M I, Darago L E, Evans W J, Long J R. Giant coercivity and high magnetic blocking temperatures for N23- radical-bridged dilanthanide complexes upon ligand dissociation[J]. Nat. Commun., 2017,82144. doi: 10.1038/s41467-017-01553-w

    11. [11]

      Li H D, Jing P, Lu J, Xie J, Zhai L J, Xi L. Dipyridyl-decorated nitronyl nitroxide-Dy single-molecule magnet with a record energy barrier of 146 K[J]. Inorg. Chem., 2021,60:7622-7626. doi: 10.1021/acs.inorgchem.1c00809

    12. [12]

      Jia J H, Li Q W, Chen Y C, Liu J L, Tong M L. Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances and magneto-luminescent studies[J]. Coord. Chem. Rev., 2019,378:365-381. doi: 10.1016/j.ccr.2017.11.012

    13. [13]

      Ziessel R, Ulrich G, Lawson R C, Echegoyen L. Oligopyridine bis (nitronyl nitroxides): Synthesis, structures, electrochemical, magnetic and electronic properties[J]. J. Mater. Chem., 1999,9:1435-1448. doi: 10.1039/a810044f

    14. [14]

      Kahn O. Molecular magnetism. Weinheim: VCH, 1993.

    15. [15]

      SAINT Version 7.68A. Bruker AXS, Inc., Madison, WI, 2009.

    16. [16]

      Sheldrick G M. SADABS, Version 2008/1. Bruker AXS, Inc., Madison, WI, 2008.

    17. [17]

      Sheldrick G M. SHELXS-2014, Program for structure solution. University of Göttingen, Germany, 2014.

    18. [18]

      Sheldrick G M. SHELXL-2014, Program for structure refinement. University of Göttingen, Germany, 2014.

    19. [19]

      Kahn M L, Sutter J P, Guionneau S G P, Ouahab L, Kahn O, Chasseau D. Systematic investigation of the nature of the coupling between an Ln(Ⅲ) Ion (Ln=Ce(Ⅲ) to Dy(Ⅲ)) and its aminoxyl radical ligands: Structural and magnetic characteristics of a series of {Ln(organic radical)2} compounds and the related {Ln(Nitrone)2} derivatives[J]. J. Am. Chem. Soc., 2000,122:3413-3421. doi: 10.1021/ja994175o

    20. [20]

      Wang Y J, Wu D F, Gou J, Duan Y Y, Li L, Chen H H, Gao H L, Cui J Z. Modulation of the properties of dinuclear lanthanide complexes through utilizing different β-diketonate co-ligands: Near-infrared luminescence and magnetization dynamics[J]. Dalton Trans., 2020,49:2850-2861. doi: 10.1039/C9DT04093E

    21. [21]

      Xi L, Li H D, Sun J, Ma Y, Tang J K, Li L C. Designing multicoordinating nitronyl nitroxide radical toward multinuclear lanthanide aggregates[J]. Inorg. Chem., 2020,59:443-451. doi: 10.1021/acs.inorgchem.9b02739

    22. [22]

      Casanova D, Llunell M, Alemany P, Alvarez S. The rich stereochemistry of eight vertex polyhedra: A continuous shape measures study[J]. Chem.-Eur. J., 2005,11:1479-1494. doi: 10.1002/chem.200400799

    23. [23]

      Llunell M, Casanova D, Cirera J, Alemany P, Alvarez S. SHAPE 2.1. University of Barcelona, Spain, 2013.

    24. [24]

      Liu Y, Anh Ho L T, Huang G Z, Chen Y C, Ungur L, Liu J L, Tong M L. Magnetization dynamics on isotope-isomorphic holmium single-molecule magnets[J]. Angew. Chem. Int. Ed., 2021,60:27282-27287. doi: 10.1002/anie.202112764

    25. [25]

      Yang Q Q, Ungur L, Chibotarud L F, Tang J K. Toroidal versus centripetal arrangement of the magnetic moment in a Dy4 tetrahedron[J]. Chem. Commun., 2022,58:1784-1787. doi: 10.1039/D1CC06265D

    26. [26]

      Dolinar B S, Coca S G, Alexandropoulos D I, Dunbar K R. An air stable radical-bridged dysprosium single molecule magnet and its neutral counterpart: Redox switching of magnetic relaxation dynamics[J]. Chem. Commun., 2017,53:2283-2286. doi: 10.1039/C6CC09824J

    27. [27]

      Wang J, Miao H, Xiao Z X, Zhou Y, Deng L D, Zhang Y Q, Wang X Y. Syntheses, structures and magnetic properties of the lanthanide complexes of the pyrimidyl-substituted nitronyl nitroxide radical[J]. Dalton Trans., 2017,46:10452-10461. doi: 10.1039/C7DT01037K

    28. [28]

      Liu C M, Sun R, Hao X, Wang B W. Chiral co-crystals of (S)- or (R)-1,1'-binaphthalene-2,2'-diol and Zn2Dy2 tetranuclear complexes behaving as single-molecule magnets[J]. Cryst. Growth Des., 2021,21:4346-4353. doi: 10.1021/acs.cgd.1c00246

    29. [29]

      Shi J Y, Wu M Z, Chen P Y, Li T, Tian L, Zhang Y Q. Terbium triangle bridged by a triazole nitronyl nitroxide radical with single-molecule-magnet behavior[J]. Inorg. Chem., 2019,58:14285-14288. doi: 10.1021/acs.inorgchem.9b01647

    30. [30]

      JI W J, XIA C C, ZHANG X Y, WANG X Y. Anionic modification of the Cu-Tb single-molecule magnets based on the compartmental Schiff-base ligand[J]. Chinese J. Inorg. Chem., 2022,38:1199-1208.  

    31. [31]

      Chilton N F, Collison D, McInnes E J L, Winpenny R E P, Soncini A. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes[J]. Nat. Commun., 2013,42551. doi: 10.1038/ncomms3551

    32. [32]

      Miao H, Li H Q, Shen F X, Wei H Y, Wang B L, Wang X Y. A family of lanthanide complexes with a bis-tridentate nitronyl nitroxide radical: Syntheses, structures and magnetic properties[J]. Dalton Trans., 2019,48:10337-10345. doi: 10.1039/C9DT01397K

    33. [33]

      Xiao Z X, Miao H, Shao D, Wei H Y, Zhang Y Q, Wang X Y. Single-molecule magnet behaviour in a dysprosium-triradical complex[J]. Chem. Commun., 2018,54:9726-9729. doi: 10.1039/C8CC04739A

    34. [34]

      Liu J L, Chen Y C, Zheng Y Z, Lin W Q, Ungur L, Wernsdorfer W, Chibotaru L F, Tong M L. Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh[J]. Chem. Sci., 2013,4:3310-3316. doi: 10.1039/c3sc50843a

  • 加载中
    1. [1]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    2. [2]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    3. [3]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    4. [4]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    5. [5]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    6. [6]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    7. [7]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    8. [8]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    9. [9]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    10. [10]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    11. [11]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    12. [12]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    13. [13]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    14. [14]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    15. [15]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    16. [16]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    17. [17]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    18. [18]

      Aolei TanXiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276

    19. [19]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    20. [20]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

Metrics
  • PDF Downloads(0)
  • Abstract views(100)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return