Citation: Zhaomei LIU, Wenshi ZHONG, Jiaxin LI, Gengshen HU. Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404 shu

Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors

  • Corresponding author: Gengshen HU, gshu@zjnu.edu.cn
  • Received Date: 25 October 2023
    Revised Date: 4 January 2024

Figures(7)

  • N-doped porous carbons with ultra-high surface area was prepared by simple grinding and carbonization using sucrose as the carbon source, urea as the nitrogen source, and potassium oxalate as the activator. The effects of potassium oxalate and urea at different temperatures on the specific surface area, nitrogen content, and capacitive performance of carbons were investigated. The results showed that the specific surface area of KC- 800 prepared using only potassium oxalate as an activation agent was 1 114 m2·g-1, while the specific surface area of KNC-800 prepared using both potassium oxalate and urea was as high as 3 033 m2·g-1. In a three-electrode system, the specific capacitance of KNC-800 was 405 F·g-1 at the current density of 0.5 A·g-1, while the specific capacitance of KC-800 was only 248 F·g-1, indicating that the synergistic effect of potassium oxalate and urea can significantly improve the specific surface area and capacitive performance. The capacitance contribution analysis showed that both the electrical double-layer capacitance and pseudocapacitance values of KNC-800 were higher than those of KC-800. KNC-800 maintained an initial specific capacitance of 98.3% after 10 000 cycles at 0.5 A·g-1, demonstrating excellent cycling performance.
  • 加载中
    1. [1]

      Pan Y S, Xu K, Wu C L. Recent progress in supercapacitors based on the advanced carbon electrodes[J]. Nanotechnol. Rev., 2019,8(1):299-314. doi: 10.1515/ntrev-2019-0029

    2. [2]

      Mensah-Darkwa K, Zequine C, Kahol P K, Gupta R K. Supercapacitor energy storage device using biowastes: A sustainable approach to green energy[J]. Sustainability, 2019,11(2)414. doi: 10.3390/su11020414

    3. [3]

      Zhu L F, Shen F, Smith R L, Qi X H. High-performance supercapacitor electrode materials from chitosan via hydrothermal carbonization and potassium hydroxide activation[J]. Energy Technol., 2017,5(3):452-460. doi: 10.1002/ente.201600337

    4. [4]

      Wu J, Zhang X P, Wei F X, Sui Y W, Qi J Q. Controllable synthesis of ZIF-derived nano-hexahedron porous carbon for supercapacitor electrodes[J]. Mater. Lett., 2020,258126761. doi: 10.1016/j.matlet.2019.126761

    5. [5]

      Deng W F, Zhang Y J, Yang L, Tan Y M, Ma M, Xie Q J. Sulfur-doped porous carbon nanosheets as an advanced electrode material for supercapacitors[J]. RSC Adv., 2015,5(17):13046-13051. doi: 10.1039/C4RA14820G

    6. [6]

      Wang L H, Morishita T, Toyoda M, Inagaki M. Asymmetric electric double layer capacitors using carbon electrodes with different pore size distributions[J]. Electrochim. Acta, 2007,53(2):882-886. doi: 10.1016/j.electacta.2007.07.069

    7. [7]

      Burrow J N, Eichler J E, Wang Y, Calabro D C, Mullins C B. N-rich porous carbons with tunable affinity for CO2 adsorption achieve size-sieving CO2/N2 selectivity in turbostratic interlayers[J]. J. Mater. Chem. A, 2022,10(46):24649-24661. doi: 10.1039/D2TA05911H

    8. [8]

      Wang K B, Wang Z K, Liu J D, Li C, Mao F F, Wu H, Zhang Q C. Enhancing the performance of a battery-supercapacitor hybrid energy device through narrowing the capacitance difference between two electrodes via the utilization of 2D MOF-nanosheet-derived Ni@nitrogen-doped-carbon core-shell rings as both negative and positive electrodes[J]. ACS Appl. Mater. Interfaces, 2020,12(42):47482-47489. doi: 10.1021/acsami.0c12830

    9. [9]

      Wang K B, Chen C Y, Li Y H, Hong Y, Wu H, Zhang C, Zhang Q C. Insight into electrochemical performance of nitrogen-doped carbon/NiCo-alloy active nanocomposites[J]. Small, 2023,19(23)2300054. doi: 10.1002/smll.202300054

    10. [10]

      XIN R R, MIAO H J, JIANG W, HU G S. N-doped porous carbons with high surface areas prepared through one-step chemical activation and their application for supercapacitors[J]. Chinese J. Inorg. Chem., 2019,35(10):1781-1790.  

    11. [11]

      Sevilla M, Díez N, Fuertes A B. More sustainable chemical activation strategies for the production of porous carbons[J]. ChemSusChem, 2021,14(1):94-117. doi: 10.1002/cssc.202001838

    12. [12]

      Li R, Cui X B, Bi J T, Ji X T, Li X, Wang N, Huang Y H, Huang X, Hao H X. Urea-induced supramolecular self-assembly strategy to synthesize wrinkled porous carbon nitride nanosheets for highly-efficient visible-light photocatalytic degradation[J]. RSC Adv., 2021,11(38):23459-23470. doi: 10.1039/D1RA03524J

    13. [13]

      Zhang L, Yang X, Zhang F, Long G K, Zhang T F, Leng K, Zhang Y W, Huang Y, Ma Y F, Zhang M T, Chen Y S. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials[J]. J. Am. Chem. Soc., 2013,135(15):5921-5929. doi: 10.1021/ja402552h

    14. [14]

      Yang L, Wu D L, Wang T, Jia D Z. B/N-codoped carbon nanosheets derived from the self-assembly of chitosan-amino acid gels for greatly improved supercapacitor performances[J]. ACS Appl. Mater. Interfaces, 2020,12(16):18692-18704. doi: 10.1021/acsami.0c01655

    15. [15]

      Luo Y N, Guo R S, Li T T, Liu Z C, Li F Y, Wang B Y, Zheng M, Yang Z W, Wan Y Z, Luo H L. Applications of pyrolytic polyaniline for renewable energy storage[J]. ChemElectroChem, 2018,5(23):3597-3606. doi: 10.1002/celc.201801075

    16. [16]

      Demir M, Farghaly A A, Decuir M J, Collinson M M, Gupta R B. Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin[J]. Mater. Chem. Phys., 2018,216:508-516. doi: 10.1016/j.matchemphys.2018.06.008

    17. [17]

      Chen Y, Xu X H, Ma R, Sun S C, Lin J H, Luo J, Huang H M. Preparation of hierarchical porous carbon by pyrolyzing sargassum under microwave: The internal connection between structure-oriented regulation and performance optimization of supercapacitors[J]. J. Energy Storage, 2022,53105190. doi: 10.1016/j.est.2022.105190

    18. [18]

      Chen H J, Wei H M, Fu N, Qian W, Liu Y P, Lin H L, Han S. Nitrogen-doped porous carbon using ZnCl2 as activating agent for high-performance supercapacitor electrode materials[J]. J. Mater. Sci., 2017,53(4):2669-2684.

    19. [19]

      Zhou J, Wang H, Yang W, Wu S J, Han W. Sustainable nitrogen-rich hierarchical porous carbon nest for supercapacitor application[J]. Carbohydr. Polym., 2018,198:364-374. doi: 10.1016/j.carbpol.2018.06.095

    20. [20]

      Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. J. Phys. Chem. C, 2007,111(40):14925-14931. doi: 10.1021/jp074464w

    21. [21]

      Peng H, Ma G F, Sun K J, Zhang Z G, Yang Q, Lei Z Q. Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors[J]. Electrochim. Acta, 2016,190:862-871. doi: 10.1016/j.electacta.2015.12.195

    22. [22]

      Chen L F, Zhang X D, Liang H W, Kong M G, Guan Q F, Chen P, Wu Z Y, Yu S H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors[J]. ACS Nano, 2012,6(8):7092-7102. doi: 10.1021/nn302147s

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    16. [16]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    17. [17]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    18. [18]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    19. [19]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(22)
  • Abstract views(792)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return