Citation: Jiao CHEN, Yi LI, Yi XIE, Dandan DIAO, Qiang XIAO. Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403 shu

Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes

  • Corresponding author: Qiang XIAO, xiaoq@zjnu.cn
  • Received Date: 25 October 2023
    Revised Date: 16 January 2024

Figures(7)

  • Ultra-thin and b-axis oriented MFI zeolite membranes were fabricated by a vapor phase transport (VPT) method using ethylenediamine-water vapor. The membrane thickness was rationally controlled by converting a deposit layer of MFI nanosheets into a dense zeolite membrane. Scanning electron microscope and X-ray diffraction results revealed that the prepared membrane had a thickness of about 280 nm with a highly b-axis oriented dense structure. The binary gas separation test of butane isomers showed that a permeation rate of n-butane of 1.5×10-7 mol·m-2·s-1·Pa-1 at a separation factor of 14.8 could be achieved for an equimolar n-butane/iso-butane mixtures at 333 K. Na2SiO3, serving as a source of silica and alkalinity, played a crucial role in the secondary growth of MFI zeolite nanosheets. Na2SiO3 facilitated the fusion growth among the MFI zeolite nanosheets in the presence of amine vapor, which improved the orientation and compactness of the membranes.
  • 加载中
    1. [1]

      Saulat H, Yang J H, Wensen S, Raza W, He G H. Fabrication of isomorphously substituted W-MFI membrane with high performance for ethanol separation from water[J]. Chem-Asian J., 2022,17(5)e202101404. doi: 10.1002/asia.202101404

    2. [2]

      Lan J C, Wu H W, Saulat H, Li L Q, Yang J H, Lu J M, Zhang Y. Synthesis of ethanol perm-selective MFI zeolite membranes by binary structure directing agents[J]. J. Membr. Sci., 2020,598117647. doi: 10.1016/j.memsci.2019.117647

    3. [3]

      Mirfendereski S M, Lin J Y S. High-performance MFI zeolite hollow fiber membranes synthesized by double-layer seeding with variable temperature secondary growth[J]. J. Membr. Sci., 2021,618118573. doi: 10.1016/j.memsci.2020.118573

    4. [4]

      Li S, Wang X, Beving D, Chen Z W, Yan Y S. Molecular sieving in a nanoporous b-oriented pure-silica-zeolite MFI monocrystal film[J]. J. Am. Chem. Soc., 2004,126(13):4122-4123. doi: 10.1021/ja031985y

    5. [5]

      Liu Y, Li Y S, Yang W S. Fabrication of highly b-oriented MFI film with molecular sieving properties by controlled in-plane secondary growth[J]. J. Am. Chem. Soc., 2010,132(6):1768-1769. doi: 10.1021/ja909888v

    6. [6]

      Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009,461(7261):246-249. doi: 10.1038/nature08288

    7. [7]

      Varoon K, Zhang X Y, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis L F, Mccormick A V, Mkhoyan K A, Tsapatsis M. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane[J]. Science, 2011,334(6052):72-75. doi: 10.1126/science.1208891

    8. [8]

      Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, Basahel S N, Al-Thabaiti S, Xu W Q, Cho H J, Fetisov E O, Thyagarajan R, Dejaco R F, Fan W, Mkhoyan K A, Siepmann J I, Tsapatsis M. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017,543(7647):690-706. doi: 10.1038/nature21421

    9. [9]

      Cao Z S, Zeng S X, Xu Z, Arvanitis A, Yang S W, Gu X H, Dong J H. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines[J]. Sci. Adv., 2018,4(11)eaau8634. doi: 10.1126/sciadv.aau8634

    10. [10]

      Zhou M, Hedlund J. Facile preparation of hydrophobic colloidal MFI and CHA crystals and oriented ultrathin films[J]. Angew. Chem. Int. Ed., 2018,57(34):10966-10970. doi: 10.1002/anie.201806502

    11. [11]

      Liu Y, Qiang W L, Ji T T, Zhang M, Li M R, Lu J M. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Sci. Adv., 2020,6(7)eaay5993. doi: 10.1126/sciadv.aay5993

    12. [12]

      Lu X F, Yang Y W, Zhang J J, Yan Y S, Wang Z B. Solvent-free secondary growth of highly b-oriented MFI zeolite films from anhydrous synthetic powder[J]. J. Am. Chem. Soc., 2019,141(7):2916-2919. doi: 10.1021/jacs.9b00018

    13. [13]

      Pham T C T, Nguyen T H, Yoon K B. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation[J]. Angew. Chem. Int. Ed., 2013,52(33):8693-8698. doi: 10.1002/anie.201301766

    14. [14]

      Lai Z P, Tsapatsis M, Nicolich J P. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers[J]. Adv. Funct. Mater., 2004,14(7):716-729. doi: 10.1002/adfm.200400040

    15. [15]

      Banihashemi F, Ibrahim A F M, Babaluo A A, Lin J Y S. Template-free synthesis of highly b-oriented MFI-type zeolite thin films by seeded secondary growth[J]. Angew. Chem. Int. Ed., 2019,58(8):2519-2523. doi: 10.1002/anie.201814248

    16. [16]

      Xu W Y, Dong J X, Li J P, Li J Q, Wu F. A novel method for the preparation of zeolite ZSM-5[J]. Chem. Commun., 1990(10):755-756. doi: 10.1039/c39900000755

    17. [17]

      Matsufuji T, Nishiyama N, Ueyama K, Matsukata M. Permeation characteristics of butane isomers through MFI-type zeolitic membranes[J]. Catal. Today, 2000,56(1):265-273.

    18. [18]

      Han S C, Liu P, Ma Y, Wu Q M, Meng X J, Xiao F S. Calcination-free fabrication of highly b-oriented silicalite-1 zeolite films by secondary growth in the absence of organic structure directing agents[J]. Ind. Eng. Chem. Res., 2021,60(19):7167-7173. doi: 10.1021/acs.iecr.1c01102

    19. [19]

      Zhang H, Xiao Q, Guo X H, Li N J, Kumar P, Rangnekar N, Jeon M Y, Al-Thabaiti S, Narasimharao K, Basahel S N, Topuz B, Onorato F J, Macosko C W, Mkhoyan K A, Tsapatsis M. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports[J]. Angew. Chem. Int. Ed., 2016,55(25):7184-7187. doi: 10.1002/anie.201601135

    20. [20]

      WU Y Q, ZHENG L K, CHEN Q, YU M T, WANG J G, ZHANG F M, XIAO Q, ZHU W D. Fabrication of zeolite membrane using two-dimensional open-pore MFI nanosheets as building blocks[J]. Chinese J. Inorg. Chem., 2019,35(1):89-94.  

    21. [21]

      Diao D D, Zhang H Y, Wang J G, Xiao Q. Wet-oxidization and exfoliation of non-swollen MCM-22P to dispersible two-dimensional MWW zeolite nanosheets[J]. Microporous Mesoporous Mat., 2022,330111629. doi: 10.1016/j.micromeso.2021.111629

    22. [22]

      Agrawal K V, Topuz B, Pham T C T, Nguyen T H, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, Macosko C W, Al-Thabaiti S, Tsapatsis M, Yoon K B. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers[J]. Adv. Mater., 2015,27(21):3243-3249. doi: 10.1002/adma.201405893

    23. [23]

      Zhang F Z, Fuji M, Takahashi M. In situ growth of continuous b-oriented MFI zeolite membranes on porous α-alumina substrates precoated with a mesoporous silica sublayer[J]. Chem. Mater., 2005,17(5):1167-1173. doi: 10.1021/cm048644j

    24. [24]

      MA Y K, CHEN J, LI Y, YANG Y T, ZHANG H Y, LU C S, WU G J, XIAO Q. Gel-less steam-assisted crystallization of platelike MFI crystals for the fabrication of b-oriented zeolite membranes[J]. Chinese J. Inorg. Chem., 2023,39(2):245-254.  

    25. [25]

      Hrabanek P, Zikanova A, Drahokoupil J, Prokopova O, Brabec L, Jirka I, Matejkova M, Fila V, Iglesia O D L, Kocirik M. Combined silica sources to prepare preferentially oriented silicalite-1 layers on various supports[J]. Microporous Mesoporous Mat., 2013,174:154-162. doi: 10.1016/j.micromeso.2013.03.007

    26. [26]

      Nian P, Su M H, Yu T, Wang Z, Zhang B X, Shao X L, Jin X Y, Jiang N Z, Li S, Ma Q. Fabrication of a highly b-oriented MFI-type zeolite film-modified electrode with molecular sieving properties by langmuir-blodgett method[J]. J. Mater. Sci., 2016,51(6):3257-3270. doi: 10.1007/s10853-015-9638-0

    27. [27]

      Wang Z, Zhang H Y, Ma Y K, Diao D D, Lu C S, Xiao Q, Wu G J, Li L D. Transfer printing platelike MFI crystals as seeds for the preparation of silicalite-1 membranes[J]. Microporous Mesoporous Mat., 2022,336111895. doi: 10.1016/j.micromeso.2022.111895

    28. [28]

      Cundy C S, Lowe B M, Sinclair D M. Crystallisation of zeolitic molecular sieves: Direct measurements of the growth behaviour of single crystals as a function of synthesis conditions[J]. Faraday Discuss., 1993,95:235-252. doi: 10.1039/fd9939500235

    29. [29]

      Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. Manual assembly of microcrystal monolayers on substrates[J]. Angew. Chem. Int. Ed., 2007,46(17):3087-3090. doi: 10.1002/anie.200604367

    30. [30]

      Wang Q, Wu A, Zhong S L, Wang B, Zhou R F. Highly (h0h)-oriented silicalite-1 membranes for butane isomer separation[J]. J. Membr. Sci., 2017,540:50-59. doi: 10.1016/j.memsci.2017.06.009

    31. [31]

      Krishna R, Baten J M. Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking[J]. Chem. Eng. J., 2008,140(1/2/3):614-620.

    32. [32]

      Titze T, Chmelik C, Kärger J, Baten J M, Krishna R. Uncommon synergy between adsorption and diffusion of hexane isomer mixtures in MFI zeolite induced by configurational entropy effects[J]. J. Phys. Chem. C, 2014,118(5):2660-2665. doi: 10.1021/jp412526t

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

Metrics
  • PDF Downloads(0)
  • Abstract views(118)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return