Citation: Hailang JIA, Hongcheng LI, Pengcheng JI, Yang TENG, Mingyun GUAN. Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402 shu

Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts

  • Corresponding author: Hailang JIA, jiahailang85@126.com
  • Received Date: 25 October 2023
    Revised Date: 16 January 2024

Figures(5)

  • Carbon nanotube (CNT) was used as raw materials, loaded with vitamin B12, and then subjected to simple pyrolysis to obtain a nitrogen doped carbon nanotube (N/CNT) and loaded with low content Co3O4 nanoparticles (Co3O4@N/CNT) as an oxygen reduction reaction electrocatalyst. Due to the uniformly dispersed Co3O4 nanoparticles and N-doped effect, Co3O4@N/CNT exhibited excellent oxygen reduction reaction catalytic performance, with a half wave potential of 0.844 V (vs RHE), surpassing the performance of commercial Pt/C (0.820 V vs RHE). Compared to Pt/C, the zinc-air battery based on Co3O4@N/CNT exhibited better discharge performance and cycle stability.
  • 加载中
    1. [1]

      Eissa A A, Kim N H, Lee J H. Rational design of a highly mesoporous Fe-N-C/Fe3C/C-S-C nanohybrid with dense active sites for superb electrocatalysis of oxygen reduction[J]. J. Mater. Chem. A, 2020,8:23436-23454. doi: 10.1039/D0TA06987F

    2. [2]

      Gewirth A A, Varnell J A, DiAscro A M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems[J]. Chem. Rev., 2018,118:2313-2339. doi: 10.1021/acs.chemrev.7b00335

    3. [3]

      Kundu A, Mallick S, Ghora S, Raj C R. Advanced oxygen electrocatalyst for air-breathing electrode in Zn-air batteries[J]. ACS Appl. Mater. Interfaces, 2021,13:40172-40199. doi: 10.1021/acsami.1c08462

    4. [4]

      Kang Z W, Wang X C, Wang D, Bai B, Zhao Y F, Xiang X, Zhang B, Shang H S. Carbon-based single-atom catalysts: Impacts of atomic coordination on the oxygen reduction reaction[J]. Nanoscale, 2023,15:9605-9634. doi: 10.1039/D3NR01272G

    5. [5]

      Kundu A, Kuila T, Murmu N C, Samanta P, Das S. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: Recent trends and future perspectives[J]. Mater. Horiz., 2023,10:745-787. doi: 10.1039/D2MH01067D

    6. [6]

      Zhao Z Q, Chen H, Zhang W Y, Yi S, Chen H L, Su Z, Niu B, Zhang Y Y, Long D H. Defect engineering in carbon materials for electrochemical energy storage and catalytic conversion[J]. Mater. Adv., 2023,4:835-867. doi: 10.1039/D2MA01009G

    7. [7]

      Nagappan S, Duraivel M, Park N, Prabakar K, Park K H. Implementation of heteroatom-doped nanomaterial/core-shell nanostructure based electrocatalysts for fuel cells and metal-ion/air/sulfur batteries[J]. Mater. Adv., 2022,3:6096-6124. doi: 10.1039/D2MA00390B

    8. [8]

      Cai M J, Xu L, Guo J J, Yang X B, He X X, Hu P. Recent advances in metal-free electrocatalysts for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2024,12:592-612. doi: 10.1039/D3TA05901D

    9. [9]

      Wang L L, Liu Z P, Zhang J. Synthetic carbon nanomaterials for electrochemical energy conversion[J]. Nanoscale, 2022,14:13473-13489. doi: 10.1039/D2NR03865J

    10. [10]

      Mohan R, Modak A, Schechter A. A Comparative study of plasma-treated oxygen-doped single-walled and multiwalled carbon nanotubes as electrocatalyst for efficient oxygen reduction reaction[J]. ACS Sustain. Chem. Eng., 2019,7:11396-11406. doi: 10.1021/acssuschemeng.9b01125

    11. [11]

      Lu Y Y, Li X T, Kumar A K S, Compton R G. Does nitrogen doping enhance the electrocatalysis of the oxygen reduction reaction by multiwalled carbon nanotubes?[J]. ACS Catal., 2022,12:8740-8745. doi: 10.1021/acscatal.2c02465

    12. [12]

      Yan X C, Jia Y, Yao X D. Defects on carbons for electrocatalytic oxygen reduction[J]. Chem. Soc. Rev., 2018,47:7628-7658. doi: 10.1039/C7CS00690J

    13. [13]

      Hu C G, Paul R, Dai Q B, Dai L M. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis[J]. Chem. Soc. Rev., 2021,50:11785-11843. doi: 10.1039/D1CS00219H

    14. [14]

      Feng X, Bai Y, Liu M Q, Li Y, Yang H Y, Wang X R, Wu C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy Environ. Sci., 2021,14:2036-2089. doi: 10.1039/D1EE00166C

    15. [15]

      Garg R, Jaiswal M, Kumar K, Kaur K, Rawat B, Kailasam K, Gautam U K. Extending conducting channels in Fe-N-C by interfacial growth of CNTs with minimal metal loss for efficient ORR electrocatalysis[J]. Nanoscale, 2023,15:15590-15599. doi: 10.1039/D3NR02706F

    16. [16]

      Zhang D, Ding R X, Tang Y Z, Ma L X, He Y. Stable Co/N-doped carbon nanotubes as catalysts for oxygen reduction[J]. ACS Appl. Nano Mater., 2022,5:10026-10035. doi: 10.1021/acsanm.2c02453

    17. [17]

      Yuan Y K, Wang Y F, He X Y, Chen M D, Liu J F, Liu B, Zhao H, Liu S Z, Yang H Q. Increasing gas sensitivity of Co3O4 octahedra by tuning Co-Co3O4 (111) surface structure and sensing mechanism of 3-coordinated Co atom as an active center[J]. J. Mater. Sci., 2020,31:8852-8864.

    18. [18]

      Garg R, Jaiswal M, Kumar K, Kaur K, Rawat B, Kailasam K, Gautam U K. Extending conducting channels in Fe-N-C by interfacial growth of CNTs with minimal metal loss for efficient ORR electrocatalysis[J]. Nanoscale, 2023,15:15590-15599. doi: 10.1039/D3NR02706F

    19. [19]

      Wen X D, Yang X Y, Li M, Bai L, Guan J Q. Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst[J]. Electrochim. Acta, 2019,296:830-841. doi: 10.1016/j.electacta.2018.11.129

    20. [20]

      Gao Y X, Zheng D B, Li Q C, Xiao W P, Ma T Y, Fu Y L, Wu Z X, Wang L. 3D Co3O4-RuO2 hollow spheres with abundant interfaces as advanced trifunctional electrocatalyst for water-splitting and flexible Zn-air battery[J]. Adv. Funct. Mater., 2022,322203206. doi: 10.1002/adfm.202203206

    21. [21]

      Huang J S, Lu Q Q, Ma X, Yang X R. Bio-inspired FeN5 moieties anchored on a threedimensional graphene aerogel to improve oxygen reduction catalytic performance[J]. J. Mater. Chem. A, 2018,6:18488-18497. doi: 10.1039/C8TA06455E

  • 加载中
    1. [1]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(3)
  • Abstract views(329)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return