Citation: Jun LI, Huipeng LI, Hua ZHAO, Qinlong LIU. Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401 shu

Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate

  • Corresponding author: Huipeng LI, fslhp@sina.com
  • Received Date: 23 October 2023
    Revised Date: 5 December 2023

Figures(11)

  • Polyhedral bismuth vanadate (BVO) material was prepared using a straightforward hydrothermal method, and then a small-sized AgNi bimetallic co-catalyst was synthesized in situ on the surface of the polyhedral BVO through a chemical reduction method. The photocatalytic performance of the catalyst was studied. The physicochemical properties of the prepared AgNi/BVO material were characterized through various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and nitrogen adsorption-desorption analysis. The results indicated that AgNi bimetallic co-catalysts were extensively loaded onto the unique morphology of BVO polyhedra, significantly increasing the metal attachment sites. Simultaneously, the AgNi loading also improved the crystallinity of BVO. The silver surface plasmon resonance effect, in conjunction with the nickel's lattice interface effect, enhanced the BVO catalyst's absorption of visible light and improved the separation of photo-generated electrons, thereby increasing the photocatalytic activity. Photocatalytic degradation experiments using MB (methylene blue) as a model pollutant demonstrated that when the ratio was 3:1, AgNi/BVO exhibited the highest catalytic activity, with a reaction rate of 5.4 times higher than that of BVO under visible light irradiation. This photocatalyst retained excellent photocatalytic activity even after four cycles of use.
  • 加载中
    1. [1]

      Queiroz B D, Fernandes J A, Martins C A, Wender H. Photocatalytic fuel cells: From batch to microfluidics[J]. J. Environ. Chem. Eng., 2022,10(3)107611. doi: 10.1016/j.jece.2022.107611

    2. [2]

      Sahoo D P, Das K K, Patnaik S, Parida K. Double charge carrier mechanism through 2D/2D interface-assisted ultrafast water reduction and antibiotic degradation over architectural S, P co-doped g-C3N4/ ZnCr LDH photocatalyst[J]. Inorg. Chem. Front., 2020,7(19):3695-3717. doi: 10.1039/D0QI00617C

    3. [3]

      ZHAO D Q, GU G Z, LI Z. Application of hydrotalcite-like photocatalyst in wastewater treatment[J]. Journal of Petrochemical Universities, 2022,35(3):36-42.  

    4. [4]

      ZHANG R N, HE S J, WANG X R, WANG F F, CHEN C D. Study on soft chemical preparation and properties of BatiO3-TiO2 complex[J]. Journal of Petrochemical Universities, 2022,35(4):46-51.  

    5. [5]

      Kublik N, Gomes L E, Plaça L F, Lima T H N, Abelha T F, Ferencz J A P, Caires A R L, Wender H. Metal-free g-C3N4/nanodiamond heterostructures for enhanced photocatalytic pollutant removal and bacteria photoinactivation[J]. Photochem, 2021,1(2):302-318. doi: 10.3390/photochem1020019

    6. [6]

      Stelo F, Kublik N, Ullah S, Wender H. Recent advances in Bi2MoO6 based Z-scheme heterojunctions for photocatalytic degradation of pollutants[J]. J. Alloy. Compd., 2020,829154591. doi: 10.1016/j.jallcom.2020.154591

    7. [7]

      Nogueira A C, Gomes L E, Ferencz J A P, Rodrigues J E F S, Gonçalves R V, Wender H. Improved visible light photoactivity of CuBi2O4/CuO heterojunctions for photodegradation of methylene blue and metronidazole[J]. J. Phys. Chem. C, 2019,123:25680-25690. doi: 10.1021/acs.jpcc.9b06907

    8. [8]

      Gomes L E, Silva M F, Gonçalves R V, Machado G, Alcantara G B, Caires A R L, Wender H. Synthesis and visible-light-driven photocatalytic activity of Ta4+ self-doped gray Ta2O5 nanoparticles[J]. J. Phys. Chem. C, 2018,122:6014-6025.

    9. [9]

      Long M, Cai W M, Cai J, Zhou B X, Chai X Y, Wu Y H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation[J]. J. Phys. Chem. B, 2006,110(41):20211-20216. doi: 10.1021/jp063441z

    10. [10]

      Kohtani S, Hiro J, Yamamoto N, Kudo A, Tokumura K, Nakagaki R. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation[J]. Catal. Commun., 2008,6(3):185-189.

    11. [11]

      Ge L. Novel Pd/BiVO4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation[J]. Mater. Chem. Phys., 2008,107(2):465-470.

    12. [12]

      Ge L. Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange[J]. J. Mol. Catal. A-Chem., 2008,282(1/2):62-66.

    13. [13]

      Bian Z Y, Zhu Y Q, Zhang G X, Ding A Z, Wang H. Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO4 photocatalysts[J]. Chemosphere, 2014,117:527-531. doi: 10.1016/j.chemosphere.2014.09.017

    14. [14]

      Wei Y, Zhang Y W, Miao J, Geng W, Long M C. In-situ utilization of piezo-generated hydrogen peroxide for efficient p-chlorophenol degradation by Fe loading bismuth vanadate[J]. Appl. Surf. Sci., 2021,543148791. doi: 10.1016/j.apsusc.2020.148791

    15. [15]

      Kudo A, Omori K, Kato H. A novel aqueous process for the preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. J. Am. Chem. Soc., 1999,121(49):11459-11467. doi: 10.1021/ja992541y

    16. [16]

      Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chem. Mater., 2001,13(12):4624-4628. doi: 10.1021/cm0103390

    17. [17]

      Ong W J, Putri L K, Tan L L, Chai S P, Yong S T. Heterostructured AgX/g-C3N4 (X=Cl and Br) nanocomposites via a sonication-assisted deposition precipitation approach: The emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide[J]. Appl. Catal. B-Environ., 2016,180:530-543. doi: 10.1016/j.apcatb.2015.06.053

    18. [18]

      XU P, LI Y J, LIU C, LI M, DENG R C, KUANG M R. Preparation and visible light catalytic performance of silver doped mesoporous titanium dioxide[J]. J. Chin. Ceram. Soc., 2014,42(9):1196-1202.  

    19. [19]

      Zhang B, Zhang X M, Wei Y, Xia L, Pi C R, Song H, Zheng Y, Gao B, Fu J J, Chu P K. General synthesis of NiCo alloy nanochain arrays with thin oxide coating: A highly efficient bifunctional electrocatalyst for overall water splitting[J]. J. Alloy. Compd., 2019,797:1216-1223. doi: 10.1016/j.jallcom.2019.05.036

    20. [20]

      Guo Z W, Liu T, Wang Q T, Gao G H. Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane[J]. RSC Adv., 2018,8(2):843-847. doi: 10.1039/C7RA10568A

    21. [21]

      ZHANG X Y, CHEN P, ZHAO Y X, LI X J, YANG S J, YANG Y. Fabrication and photocatalytic properties of MOF-808/Bi2MoO6 composites[J]. Chinese J. Inorg. Chem., 2023,39(5):805-814.  

    22. [22]

      ZHAO Y X, HU H, ZHOU X, YANG S J, YANG Y. Preparation and photocatalytic degradation performance of MOF-808/BiOCl composites[J]. Chinese J. Inorg. Chem., 2023,39(8):1553-1563.  

    23. [23]

      LIANG M J, DENG N, XIANG X Y, MEI Y, YANG Z Y, YANG Y, YANG S J. Bi/BiVO4 & Bi4V2O11 composite catalysts: Preparation and photocatalytic performance[J]. Chinese J. Inorg. Chem., 2019,35(2):263-270.

    24. [24]

      Walsh A, Yan Y F, Huda M N, Al-Jassim M M, Wei S H. Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals[J]. Chem. Mater., 2009,21(3):547-551.

    25. [25]

      Sun S M, Wang W Z, Zhang L, Yin W Z, Shang M. Visible light- induced efficient contaminant removal by Bi5O7I[J]. Environ. Sci. Technol., 2009,43(6):2005-2010.

    26. [26]

      Chang X F, Huang J, Cheng C, Sui Q, Sha W, Ji G B, Deng S B, Yu G. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance[J]. Catal. Commun., 2010,11(5):460-464.

    27. [27]

      Zhang L, Wang W Z, Zhou L, Xu H L. Bi2WO6 nano and microstructures: Shape control and associated visible-light-driven photocatalytic activities[J]. Small, 2007,3(9):1618-1625.

    28. [28]

      Oh W C, Liu Y, Cho K Y, Biswas M R U D. Sonochemical synthesis of PANI-BiVO4-GO semiconductor nanocomposite highly efficient visible-light photocatalytic performance[J]. Fuller. Nanotub. Carbon Nanostruct., 2020,28(11):945-958.

    29. [29]

      Kumar M, Elqahtani Z M, Alrowaili Z A, Al-Buriahi M S, Kebaili I, Boukhris I, Vaish R. Photocatalytic BiVO4-cement composites for dye degradation[J]. J. Electron. Mater., 2023,52:4672-4685.

    30. [30]

      Kumar M, Ansari M N M, Boukhris I, Al-Buriahi M S, Alrowaili Z A, Alfryyan N, Thomas P, Vaish R. Sonophotocatalytic dye degradation using rGO-BiVO4 composites[J]. Global Challenges, 2022,6(6)2100132.

    31. [31]

      Sánchez-Albores R M, Pérez-Sariñana B Y, Meza-Avendaño C A, Sebastian P G, Reyes-Vallejo O, Robles-Ocampo J B. Hydrothermal synthesis of bismuth vanadate-alumina assisted by microwaves to evaluate the photocatalytic activity in the degradation of methylene blue[J]. Catal. Today, 2020,353(15):126-133.

    32. [32]

      Channei D, Nakaruk A, Khanitchaidecha W, Jannoey P, Phanichphant S. Adsorption and photocatalytic processes of mesoporous SiO2-coated monoclinic BiVO4[J]. Front. Chem., 2018,6415.

  • 加载中
    1. [1]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    2. [2]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    7. [7]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    8. [8]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    9. [9]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    10. [10]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    11. [11]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    12. [12]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    13. [13]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    14. [14]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    15. [15]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    16. [16]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    17. [17]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    18. [18]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    19. [19]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    20. [20]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

Metrics
  • PDF Downloads(0)
  • Abstract views(185)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return