Citation: Bing LIU, Huang ZHANG, Hongliang HAN, Changwen HU, Yinglei ZHANG. Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398 shu

Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst

  • Corresponding author: Huang ZHANG, 18010156720@163.com
  • Received Date: 21 October 2023
    Revised Date: 10 January 2024

Figures(14)

  • TiO2-coated triangle Au with a core-shell structure (Au@TiO2) was synthesized using the sol-gel method. After hydrothermal crystallization, the particle size expanded to 300 nm with crystallization of the shell TiO2 into a mesoporous anatase phase, while the morphology of the triangle Au particle remained unchanged. The structure and properties of the samples were characterized using powder X-ray diffraction (PXRD), ζ potential, high-resolution transmission electron microscopy (HRTEM), thermogravimetric analysis (TGA), photoluminescence (PL) spectroscopy, photocurrent (i-t) measurements, and methylene blue (MB) photodegradation tests. The results revealed that the photocatalytic degradation rate of crystallized triangle Au@TiO2 was significantly higher than that of the amorphous material. Specifically, 1 mg·mL-1 Au@c-TiO2 achieved complete degradation of 60 mg·L-1 MB after one hour of visible light irradiation. An electron paramagnetic resonance (EPR) experiment was conducted, indicating that ·O2- and ·OH are the active species responsible for the degradation process. By combining experimental results with finite-difference time-domain (FDTD) analysis, we proposed a mechanism for the photodegradation process.
  • 加载中
    1. [1]

      Yu M S, Lv X Y, Idris A M, Li S H, Lin J Q, Lin H, Wang J, Li Z Q. Upconversion nanoparticles coupled with hierarchical ZnIn2S4 nanorods as a near-infrared responsive photocatalyst for photocatalytic CO2 reduction[J]. J. Colloid Interface Sci., 2022,612(15):782-791.

    2. [2]

      Dong S F, Tan Z K, Chen Q S, Huang G C, Wu L, Bi J H. Cobalt quantum dots as electron collectors in ultra-narrow bandgap dioxin linked covalent organic frameworks for boosting photocatalytic solar-to-fuel conversion[J]. J. Colloid Interface Sci., 2022,628(15):573-582.

    3. [3]

      ZHA F J, LIU Q, WANG J Y, LIN Y H, WANG C Y, LI Y X. One-dimensional TiO2 anatase/rutile heterophase junctions: Preparation and photocatalytic properties for degrading formaldehyde[J]. Chinese J. Inorg. Chem., 2022,38(3):510-518. doi: 10.11862/CJIC.2022.057

    4. [4]

      ZHU Y K, JIANG X J, CHEN J Y, FU X H, WU L G, WANG T. Mechanism and pathways for degrading tetracycline via photocatalytic synergistic peroxysulfate-activated catalytic oxidation[J]. Chinese J.Inorg. Chem., 2023,39(10):1857-1868. doi: 10.11862/CJIC.2023.164

    5. [5]

      FU X H, WANG L X, LI Y, WU L G, WANG T. Chiral TiO2-based photocatalysts with visible light response and their photo-degradation of organic pollutants[J]. Acta Scientiae Circumstantiae, 2021,41(12):4862-4870.  

    6. [6]

      Li D, Chen S L, You R, Liu Y X, Yang M, Cao T, Qian K, Zhang Z H, Tian J, Huang W X. Titania-morphology-dependent dual-perimeter-sites catalysis by Au/TiO2 catalysts in low-temperature CO oxidation[J]. J. Catal., 2018,368:163-171. doi: 10.1016/j.jcat.2018.09.032

    7. [7]

      Tachikawa T, Yonezawa T, Majima T. Super-resolution mapping of reactive sites on titania-based nanoparticles with water-soluble fluorogenic probes[J]. ACS Nano, 2013,7(1):263-275. doi: 10.1021/nn303964v

    8. [8]

      Bian Z F, Tachikawa T, Zhang P, Fujitsuka M, Majima T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity[J]. J. Am. Chem. Soc., 2014,136(1):458-465. doi: 10.1021/ja410994f

    9. [9]

      Lee H K, Jang H S, Kim N Y, Joo J B. Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions[J]. J. Ind. Eng. Chem., 2021,99:352-363. doi: 10.1016/j.jiec.2021.04.045

    10. [10]

      Liao G F, Li C X, Liu S Y, Fang B Z, Yang H M. Z-scheme systems: From fundamental principles to characterization, synthesis, and photocatalytic fuel-conversion applications[J]. Phys. Rep.-Rev. Sec. Phys. Lett., 2022,983:1-41.

    11. [11]

      Zhang Q, Lima D Q, Lee I, Zaera P, Chi M F, Yin Y D. A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration[J]. Angew. Chem. Int. Ed., 2011,50(31):7088-7092. doi: 10.1002/anie.201101969

    12. [12]

      Xu Q L, Zhang L Y, Yu J G, Wageh S, Al-Ghamdi A A, Jaroniec M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications[J]. Mater. Today, 2018,21(10):1042-1063. doi: 10.1016/j.mattod.2018.04.008

    13. [13]

      Mubeen S, Lee J, Singh N, Krämer S, Stucky G D, Moskovits M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons[J]. Nat. Nanotechnol., 2013,8:247-251. doi: 10.1038/nnano.2013.18

    14. [14]

      Niu X Y, Yan W J, Shao C C, Zhao H L, Yang J K. Hydrothermal synthesis of Mo-C co-doped TiO2 and coupled with fluorine-doped tin oxide (FTO) for high-efficiency photodegradation of methylene blue and tetracycline: Effect of donor-acceptor passivated co-doping[J]. Appl. Surf. Sci., 2019,466:882-892. doi: 10.1016/j.apsusc.2018.10.019

    15. [15]

      Li G, Cherqui C, Bigelow N W, Duscher G, Straney P J, Millstone J E, Masiello D J, Camden J P. Spatially mapping energy transfer from single plasmonic particles to semiconductor substrates via STEM/EELS[J]. Nano Lett., 2015,15(5):3465-3471. doi: 10.1021/acs.nanolett.5b00802

    16. [16]

      Long R, Mao K, Gong M, Zhou S, Hu J H, Zhi M, You Y, Bai S, Jiang J, Zhang Q, Wu X J, Xiong Y J. Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effects. Angew[J]. Chem. Int. Ed., 2014,126(12):3269-3273.

    17. [17]

      Long R, Rao Z, Mao K, Li Y, Zhang C, Liu Q L, Wang C M, Li Z Y, Wu X J, Xiong Y J. Efficient coupling of solar energy to catalytic hydrogenation by using well-designed palladium nanostructures[J]. Angew. Chem. Int. Ed., 2015,54(8):2425-2430. doi: 10.1002/anie.201407785

    18. [18]

      Mohamed R M, Kadi M W, Ismail A A. A facile synthesis of mesoporous α-Fe2O3/TiO2 nanocomposites for hydrogen evolution under visible light[J]. Ceram. Int., 2020,46(10):15604-15612. doi: 10.1016/j.ceramint.2020.03.107

    19. [19]

      Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J]. Nat. Photonics, 2014,8:95-103. doi: 10.1038/nphoton.2013.238

    20. [20]

      Wang T, Li Y, Wu W T, Zhang Y L, Wu L G, Chen H L. Effect of chiral-arrangement on the solar adsorption of black TiO2-SiO2 mesoporous materials for photodegradation and photolysis[J]. Appl. Surf. Sci., 2021,537148025. doi: 10.1016/j.apsusc.2020.148025

    21. [21]

      Wang T, Li B R, Wu L G, Yin Y B, Jiang B Q, Lou J Q. Enhanced performance of TiO2/reduced graphene oxide doped by rare-earth ions for degrading phenol in seawater excited by weak visible light[J]. Adv. Powder Technol., 2019,30(9):1920-1931. doi: 10.1016/j.apt.2019.06.011

    22. [22]

      Pu Y C, Wang G, Chang K D, Ling Y C, Lin Y K, Fitzmorris B C, Liu C M, Lu X H, Tong Y X, Zhang J Z, Hsu Y J, Li Y. Au nanostructure decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting[J]. Nano Lett., 2013,13(8):3817-3823. doi: 10.1021/nl4018385

    23. [23]

      Ji H D, Liu W, Sun F B, Huang T B, Chen L, Liu Y, Qi J J, Xie C H, Zhao D Y. Experimental evidences and theoretical calculations on phenanthrene degradation in a solar light driven photocatalysis system using silica aerogel supported TiO2 nanoparticles: Insights into reactive sites and energy evolution[J]. Chem. Eng. J., 2021,419129605. doi: 10.1016/j.cej.2021.129605

    24. [24]

      Liu R, Sen A. Controlled synthesis of heterogeneous metal-titania nanostructures and their applications[J]. J. Am. Chem. Soc., 2012,134(42):17505-17512. doi: 10.1021/ja211932b

    25. [25]

      Fang C, Jia H, Chang S, Ruan Q F, Wang P, Chen T, Wang J F. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species[J]. Energy Environ. Sci., 2014,7:3431-3438. doi: 10.1039/C4EE01787K

    26. [26]

      Duan L L, Hung C T, Wang J X, Wang C Y, Ma B, Zhang W, Ma Y Z, Zhao Z W, Yang C C, Zhao T C, Peng L, Liu D, Zhao D Y, Li W. Synthesis of fully exposed single-atom-layer metal clusters on 2D ordered mesoporous TiO2 nanosheets[J]. Angew. Chem. Int. Ed., 2022,61(43)e202211307. doi: 10.1002/anie.202211307

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    5. [5]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    13. [13]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    14. [14]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(0)
  • Abstract views(155)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return