Citation: Wenlong MA, Sangxin LIU, Yue ZHOU, Ping WU, Xin CAO, Xiaoshu ZHU, Shaohua WEI, Yiming ZHOU. Room-temperature solid-state reaction-assisted strategy to fabricate nanocomposites of N, S-codoped carbon confined FeCoS2 as high-performance anode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 145-154. doi: 10.11862/CJIC.20230395 shu

Room-temperature solid-state reaction-assisted strategy to fabricate nanocomposites of N, S-codoped carbon confined FeCoS2 as high-performance anode materials for sodium-ion batteries

Figures(6)

  • In this work, a facile and cost-effective solid-state reaction method for the synthesis of the nanocomposites (denoted as FeCoS2⊂NSC) of N, S-codoped carbon-confined FeCoS2 nanocrystalline was presented. By directly mixing cobalt acetate tetrahydrate, ferrous acetate, o-vanillin and o-phenylenediamine with a molar ratio of 1∶1∶4∶2 at ambient temperature in the presence of sulfur powder, a self-assembly solid state reaction took place to give rise to the complexes of Co(Ⅱ) and Fe(Ⅱ) with a bis-Schiff base, which were evenly distributed in the sulfur powder surroundings. After subsequent annealing at an elevated temperature, simultaneous carbonization and sulfidization occurred, resulting in the in-situ formation of ultrafine FeCoS2 nanoparticles confined in N, S-codoped carbon matrices. The phase, morphology, composition, and content of each component in the nanocomposite were determined by powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The electrochemical sodium storage performance was tested by the cyclic voltammetry and galvanostatic charge-discharge techniques. The results showed that the average size of the FeCoS2 particles in the optimized nanocomposite (FeCoS2⊂NSC-7001) was ca. 3.4 nm, which was uniformly confined in the N, S-codoped carbon matrices. When FeCoS2⊂NSC-7001 was used as an anode material for sodium-ion batteries, it exhibited excellent electrochemical energy storage performance in terms of long-term cycling stability and rate capability. An anode prepared with FeCoS2⊂NSC-7001 nanocomposite exhibited significantly improved sodium-ion storage performance, where a large reversible charging capacity of 310.4 mAh·g-1 was obtained after 300 cycles at a current density of 0.1 A·g-1. Even when such an anode was cycled at a current density of 5 A·g-1, a reversible specific charging capacity of 146.0 mAh·g-1 can still be achieved, showing excellent electrochemical sodium storage performance.
  • 加载中
    1. [1]

      Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011,334(6058):928-935. doi: 10.1126/science.1212741

    2. [2]

      Han C, Li Q, Wang D W, Lu Q Q, Xing Z C, Yang X R. Cobalt sulfide nanowires core encapsulated by a N, S-codoped graphitic carbon shell for efficient oxygen reduction reaction[J]. Small, 2018,14e1703642. doi: 10.1002/smll.201703642

    3. [3]

      Cao X C, Zheng X J, Tian J H, Jin C, Ke K, Yang R Z. Cobalt sulfide embedded in porous nitrogen-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Electrochim. Acta, 2016,191:776-783. doi: 10.1016/j.electacta.2016.01.137

    4. [4]

      Gu Y, Xu Y, Wang Y. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage[J]. ACS Appl. Mater. Interfaces, 2013,5:801-806. doi: 10.1021/am3023652

    5. [5]

      Liu S X, Wang Z Z, Hou Q R, Zhang X F, Zhang A P, Zhang L C, Wu P, Zhu X S, Wei S H, Zhou Y M. Solid state reaction-enabled in situ construction of ultrafine CoS nanoparticles embedded within heteroatom-doped carbon matrices for high performance sodium-ion batteries[J]. J. Taiwan Inst. Chem. Eng., 2020,110:71-78. doi: 10.1016/j.jtice.2020.03.008

    6. [6]

      Hazarika A, Deka B K, Kim D, Roh H D, Park Y B, Park H W. Fabrication and synthesis of highly ordered nickel cobalt sulfide nanowire-grown woven Kevlar fiber/reduced graphene oxide/polyester composites[J]. ACS Appl. Mater. Interfaces, 2017,9:36311-36319. doi: 10.1021/acsami.7b11712

    7. [7]

      Zhao Y J, Liu J L, Ding C H, Wang C Z, Zhai X M, Li J B, Jin H B. The synthesis of FeCoS2 and an insight into its physicochemical performance[J]. CrystEngComm, 2018,20:2175-2182. doi: 10.1039/C8CE00299A

    8. [8]

      Zou Z X, Wang X Y, Huang J S, Wu Z C, Gao F. An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting[J]. J. Mater. Chem. A, 2019,7:2233-2241. doi: 10.1039/C8TA11072G

    9. [9]

      Cao D W, Kang W P, Huang Z D, Li H, Yang M, Li J Y, Gao Y W, Wang Y Y, Ma P, Sun D F. N-doped carbon matrix supported Fe3Ni6S8 hierarchical architecture with excellent sodium storage capability and electrocatalytic properties[J]. Electrochim. Acta, 2019,325134925. doi: 10.1016/j.electacta.2019.134925

    10. [10]

      Zhou Y M, Ye X R, Xin F B, Xin X Q. Solid state self-assembly synthesis of cobal(Ⅱ), nickel(Ⅱ), copper(Ⅱ) and zinc(Ⅱ) complexes with a bis-Schiff base[J]. Transition Met. Chem., 1999,24(1):118-120. doi: 10.1023/A:1006989707001

    11. [11]

      Xie X F, Hu Y, Fang G Z, Cao X X, Yin B, Wang Y P, Liang S Q, Cao G Z, Pan A Q. Towards a durable high performance anode material for lithium storage: Stabilizing N-doped carbon encapsulated FeS nanosheets with amorphous TiO2[J]. J. Mater. Chem. A, 2019,7:16541-16552. doi: 10.1039/C9TA03196K

    12. [12]

      Wei X J, Tan X, Meng J S, Wang X P, Hu P, Yang W, Tan S S, An Q Y, Mai L Q. Amine-assisted synthesis of FeS@N-C porous nanowires for highly reversible lithium storage[J]. Nano Res., 2018,11:6206-6216. doi: 10.1007/s12274-018-2140-7

    13. [13]

      Han F, Lv T Z, Sun B, Tang W, Zhang C Z, Li X K. In situ formation of ultrafine CoS2 nanoparticles uniformly encapsulated in N/S-doped carbon polyhedron for advanced sodium-ion batteries[J]. RSC Adv., 2017,7:30699-30706. doi: 10.1039/C7RA03628K

    14. [14]

      Peng S J, Han X P, Li L L, Zhu Z Q, Cheng F Y, Srinivansan M, Adams S, Ramakrishna S. Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability[J]. Small, 2016,12:1359-1368. doi: 10.1002/smll.201502788

    15. [15]

      Qiao X C, Jin J T, Fan H B, Li Y W, Liao S J. In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution[J]. J. Mater. Chem. A, 2017,5:12354-12360. doi: 10.1039/C7TA00993C

    16. [16]

      Yao Y Y, Zheng J C, Gong Z Y, Ding Z Y, Zhang J, Yu W J, Bengono D A M, Li H, Zhang B, Tong H. Metal-organic framework derived flower-like FeS-C composite as an anode material in lithium-ion and sodium-ion batteries[J]. J. Alloy. Compd., 2019,790:288-295. doi: 10.1016/j.jallcom.2019.03.098

    17. [17]

      Bu F X, Xiao P T, Chen J D, Aboud M F A, Shakir I, Xu Y X. Rational design of three-dimensional graphene encapsulated core-shell FeS@carbon nanocomposite as a flexible high-performance anode for sodium-ion batteries[J]. J. Mater. Chem. A, 2018,6:6414-6421. doi: 10.1039/C7TA11111H

    18. [18]

      Hu X, Liu Y J, Chen J X, Jia J C, Zhan H B, Wen Z H. FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors[J]. J. Mater. Chem. A, 2019,7:1138-1148. doi: 10.1039/C8TA10468A

    19. [19]

      Shit S C, Khilari S, Mondal I, Pradhan D, Mondal J. The design of a new cobalt sulfide nanoparticle implanted porous organic polymer nanohybrid as a smart and durable water-splitting photoelectrocatalyst[J]. Chem.-Eur. J., 2017,23:14827-14838. doi: 10.1002/chem.201702561

    20. [20]

      Lao M M, Zhao G Q, Li X, Chen Y P, Dou S X, Sun W P. Homogeneous sulfur-cobalt sulfide nanocomposites as lithium-sulfur battery cathodes with enhanced reaction kinetics[J]. ACS Appl. Energy Mater., 2017,1:167-172.

    21. [21]

      Shadike Z, Cao M H, Ding F, Sang L, Fu Z W. Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries[J]. Chem. Commun., 2015,51:10486-10489. doi: 10.1039/C5CC02564H

    22. [22]

      Liu Y Z, Zhong W T, Yang C H, Pan Q C, Li Y P, Wang G, Zheng F H, Xiong X H, Liu M L, Zhang Q Y. Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries[J]. J. Mater. Chem. A, 2018,6:24702-24708. doi: 10.1039/C8TA08562E

    23. [23]

      Cho J S, Park J S, Kang Y C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries[J]. Nano Res., 2017,10:897-907. doi: 10.1007/s12274-016-1346-9

    24. [24]

      Chen T T, Ma Y F, Guo Q B, Yang M, Xia H. A facile sol-gel route to prepare functional graphene nanosheets anchored with homogeneous cobalt sulfide nanoparticles as superb sodium-ion anodes[J]. J. Mater. Chem. A, 2017,5:3179-3185. doi: 10.1039/C6TA10272G

    25. [25]

      Guo Q B, Ma Y F, Chen T T, Xia Q Y, Yang M, Xia H, Yu Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries[J]. ACS Nano, 2017,11:12658-12667. doi: 10.1021/acsnano.7b07132

    26. [26]

      Wang L P, Wu X Q, Guo S J, Han M M, Zhou Y J, Sun Y, Huang H, Liu Y, Kang Z H. Mesoporous nitrogen, sulfur co-doped carbon dots/CoS hybrid as an efficient electrocatalyst for hydrogen evolution[J]. J. Mater. Chem. A, 2017,5:2717-2723. doi: 10.1039/C6TA09580A

    27. [27]

      Hou B H, Wang Y Y, Guo J Z, Ning Q L, Xi X T, Pang W L, Cao A M, Wang X L, Zhang J P, Wu X L. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries[J]. Nanoscale, 2018,10:9218-9225. doi: 10.1039/C7NR09674G

    28. [28]

      Xie J, Carrasco J, Li R R, Shen HJ, Chen Q, Yang M H. Novel 3D flower-like micro/nano-structure FeS/N-doped-C composites as advanced cathodes with high lithium storage performances[J]. J. Power Sources, 2019,431:226-231. doi: 10.1016/j.jpowsour.2019.05.041

    29. [29]

      Yin B, Cao X X, Pan A Q, Luo Z G, Dinesh S, Lin J D, Tang Y, Liang S Q, Cao G Z. Encapsulation of CoSx nanocrystals into N/S co-doped honeycomb-like 3D porous carbon for high-performance lithium storage[J]. Adv. Sci., 2018,51800829. doi: 10.1002/advs.201800829

    30. [30]

      Chang S H, Lu M D, Tung Y L, Tuan H Y. Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dye-sensitized solar cells[J]. ACS Nano, 2013,10:9443-9451.

    31. [31]

      Li Y, Zhou W, Dong J C, Luo Y, An P F, Liu J, Wu X, Xu G L, Zhang H B, Zhang J. Interface engineered in situ anchoring of Co9S8 nanoparticles into a multiple doped carbon matrix: Highly efficient zinc-air batteries[J]. Nanoscale, 2018,10:2649-2657. doi: 10.1039/C7NR07235J

    32. [32]

      Huang S Z, Fan S, Xie L X, Wu Q Y, Kong D Z, Wang Y, Lim Y V, Ding M, Shang Y, Chen S, Yang H Y. Promoting highly reversible sodium storage of iron sulfide hollow polyhedrons via cobalt incorporation and graphene wrapping[J]. Adv. Energy Mater., 2019,91901584. doi: 10.1002/aenm.201901584

    33. [33]

      Li Y X, Yin J, An L, Lu M, Sun K, Zhao Y Q, Gao D Q, Cheng F Y, Xi P X. FeS2-CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting[J]. Small, 2018,14e1801070. doi: 10.1002/smll.201801070

    34. [34]

      Shen M X, Ruan C P, Chen Y, Jiang C H, Ai K L, Lu L H. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: Extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. ACS Appl. Mater. Interfaces, 2015,7:1207-1218. doi: 10.1021/am507033x

    35. [35]

      Huang J, Tang X K, Li Z S, Liu K. Metal organic frameworks derived cobalt sulfide/reduced graphene oxide composites with fast reaction kinetic and excellent structural stability for sodium storage[J]. J. Colloid Interf. Sci., 2018,532:407-415. doi: 10.1016/j.jcis.2018.08.002

    36. [36]

      WANG Z Z, LIU S X, HOU Q R, ZHANG L C, ZHANG A P, WU P, ZHU X S, WEI S H, ZHOU Y M. Facile synthesis and sodium storage performance of N, Se-codoped carbon restricted NiSe nanocrystalline through a two step direct solid state reaction[J]. Chinese J. Inorg. Chem., 2020,36(8):1524-1534. doi: 10.11862/CJIC.2020.167

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(1)
  • Abstract views(492)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return