Citation: Feilong GONG, Jingxuan LIU, Mengmeng LIU, Sankui XU, Feng LI. Dynamical modulation and electrochemical water splitting effect of oxygen doped onto MoS2 core-shell spheres[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 256-262. doi: 10.11862/CJIC.20230390 shu

Dynamical modulation and electrochemical water splitting effect of oxygen doped onto MoS2 core-shell spheres

  • Corresponding author: Feng LI, lifeng696@yahoo.com
  • Received Date: 18 October 2023
    Revised Date: 20 December 2023

Figures(4)

  • Monodispersed MoS2 core-shell spheres were produced by annealing precursor MoS2 core-shell superspheres at 900 ℃ in Ar. Simultaneously, O-doping amount (atomic fraction) can be tuned from 23.1% of precursor to 17.6%, 10.8%, 5.5%, and 6.2% of as-prepared materials by regulating the heating rate of 20, 10, 5, and 2 ℃·min-1, respectively. The lower rate results in a lower amount of O doped onto MoS2 core-shell spheres. Based on the special quasi-molecular superlattices of precursors, an in-situ anion exchange reaction mechanism was proposed to understand the dynamical modulation of O-doping. The study on the electrochemical properties of the materials demonstrates that their electrochemical performance in splitting water can be improved by tuning the O-doping amount.
  • 加载中
    1. [1]

      Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015,44(15):5148-5180. doi: 10.1039/C4CS00448E

    2. [2]

      Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007,317(5834):100-102. doi: 10.1126/science.1141483

    3. [3]

      Chen J, Liu G, Zhu Y Z, Su M, Yin P F, Wu X J, Lu Q P, Tan C L, Zhao M T, Liu Z Q, Yang W M, Li H, Nam G H, Zhang L P, Chen Z H, Huang X, Radjenovic P M, Huang W, Tian Z Q, Li J F, Zhang H. Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2[J]. J. Am. Chem. Soc., 2020,142(15):7161-7167. doi: 10.1021/jacs.0c01649

    4. [4]

      Han J H, Kim H K, Baek B, Han J, Ahn H S, Baik M H, Cheon J. Activation of the basal plane in two-dimensional transition metal chalcogenide nanostructures[J]. J. Am. Chem. Soc., 2018,140(42):13663-13671. doi: 10.1021/jacs.8b05477

    5. [5]

      Xiao W, Liu P T, Zhang J Y, Song W D, Feng Y P, Gao D Q, Ding J. Dual‑functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution[J]. Adv. Energy Mater., 2017,7(7)1602086.

    6. [6]

      Kim M, Anjum M A R, Lee M, Lee B J, Lee J S. Activating MoS2 basal plane with Ni2P nanoparticles for Pt-like hydrogen evolution reaction in acidic media[J]. Adv. Funct. Mater., 2019,29(10)1809151. doi: 10.1002/adfm.201809151

    7. [7]

      Li G, Zhang D, Yu Y F, Huang S Y, Yang W T, Cao L Y. Activating MoS2 for pH-universal hydrogen evolution catalysis[J]. J. Am. Chem. Soc., 2017,139(45):16194-16200. doi: 10.1021/jacs.7b07450

    8. [8]

      Zhang Y C, Yang T R, Li J, Zhang Q, Li B Z, Gao M. Construction of Ru, O co-doping MoS2 for hydrogen evolution reaction electrocatalyst and surface-enhanced Raman scattering substrate: High-performance, recyclable, and durability improvement[J]. Adv. Funct. Mater., 2022,33(3)2210939.

    9. [9]

      Pető J, Ollár T, Vancsó P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B, Tapasztó L. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions[J]. Nat. Chem., 2018,10:1246-1251. doi: 10.1038/s41557-018-0136-2

    10. [10]

      Deng J, Li H B, Xiao J P, Tu Y C, Deng D H, Yang H X, Tian H F, Li J Q, Ren P J, Bao X H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy Environ. Sci., 2015,8(5):1594-1601. doi: 10.1039/C5EE00751H

    11. [11]

      Wu W Z, Niu C Y, Wei C, Jia Y, Li C, Xu Q. Activation of MoS2 basal planes for hydrogen evolution by zinc[J]. Angew. Chem. Int. Ed., 2019,131(7):2051-2055. doi: 10.1002/ange.201812475

    12. [12]

      Yang W W, Zhang S Q, Chen Q, Zhang C, Wei Y, Jiang H, Lin Y X, Zhao M T, He Q Q, Wang X G, Du Yi, Song L, Yang S B, Nie A M, Zou X L, Gong Y J. Conversion of intercalated MoO3 to multi-heteroatoms-doped MoS2 with high hydrogen evolution activity[J]. Adv. Mater., 2020,32(30)e2001167. doi: 10.1002/adma.202001167

    13. [13]

      Cao D F, Ye K, Moses O A, Xu W J, Liu D B, Song P, Wu C Q, Wang C D, Ding S Q, Chen S M, Ge B H, Jiang J, Song L. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution[J]. ACS Nano, 2019,13(10):11733-11740. doi: 10.1021/acsnano.9b05714

    14. [14]

      Shi Y, Zhou Y, Yang D R, Xu W X, Wang C, Wang F B, Xu J J, Xia X H, Chen H Y. Energy level engineering of MoS2 by transition- metal doping for accelerating hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2017,139(43):15479-15485. doi: 10.1021/jacs.7b08881

    15. [15]

      Chen Z X, Leng K, Zhao X X, Malkhandi S, Tang W, Tian B B, Dong L, Zheng L R, Lin M, Yeo B S, Loh K P. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide[J]. Nat. Commun., 2017,814548. doi: 10.1038/ncomms14548

    16. [16]

      Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. Controllable disorder engineering in oxygen- incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2013,135(47):17881-17888. doi: 10.1021/ja408329q

    17. [17]

      Yu L, Xia B Y, Wang X, Lou X W. General formation of M-MoS3 (M=Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution[J]. Adv. Mater., 2016,28(1):92-97. doi: 10.1002/adma.201504024

    18. [18]

      Zhang L, Wu H B, Yan Y, Wang X, Lou X W. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting[J]. Energy Environ. Sci., 2014,7(10):3302-3306. doi: 10.1039/C4EE01932F

    19. [19]

      Park S, Park J, Abroshan H, Zhang L, Kim J K, Zhang J, Guo J, Siahrostami S, Zheng X. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition[J]. ACS Energy Lett., 2018,3(11):2685-2693. doi: 10.1021/acsenergylett.8b01567

    20. [20]

      Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F. Correction: Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nat. Mater., 2016,15(3):364-364.  

    21. [21]

      Pető J, Ollár T, Vancsó P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B, Tapasztó L. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions[J]. Nat. Chem., 2018,10(12):1246-1251. doi: 10.1038/s41557-018-0136-2

    22. [22]

      Li L, Qin Z, Ries L, Hong S, Michel T, Yang J, Salameh C, Bechelany M, Miele P, Kaplan D. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen[J]. ACS Nano, 2019,13(6):6824-6834. doi: 10.1021/acsnano.9b01583

    23. [23]

      Gong F L, Peng L F, Liu H Z, Zhang Y H, Jia D Z, Fang S M, Li F, Li D M. 3D core-shell MoS2 superspheres composed of oriented nanosheets with quasi molecular superlattices: Mimicked embryo formation and Li-storage properties[J]. J. Mater. Chem. A, 2018,6(38):18498-18507. doi: 10.1039/C8TA07165A

    24. [24]

      Li F, Gong F L, Xiao Y H, Zhang A Q, Zhao J H, Fang S M, Jia D Z. ZnO twin-spheres exposed in +/-(001) facets: Stepwise self-assembly growth and anisotropic blue emission[J]. ACS Nano, 2013,7(12):10482-10491. doi: 10.1021/nn404591z

    25. [25]

      Li F, Ding Y, Gao P X, Xin X Q, Wang Z L. Single-cystal hexagonal disks and rings of ZnO: Low temperature, large-scale synthesis and growth mechanism[J]. Angew. Chem. Int. Ed., 2004,43(39):5238-5242. doi: 10.1002/anie.200460783

    26. [26]

      Liu Y H, Gong L H, Zhang Y H, Wang P Y, Wang G Q, Bai F H, Zhao Z T, Gong F L, Liu J. Metal sulfides yolk-shell nanoreactors with dual component for enhanced acidic electrochemical hydrogen production[J]. Small Struct., 2022,4(3)2200247.

    27. [27]

      Yang Y, Luo M C, Xing Y, Wang S T, Zhang W Y, Lv F, Li Y J, Zhang Y L, Wang W, Guo S J. A Universal strategy for intimately coupled carbon nanosheets/MoM nanocrystals (M=P, S, C, and O) hierarchical hollow nanospheres for hydrogen evolution catalysis and sodium-ion storage[J]. Adv. Mater., 2018,30(18)e1706085. doi: 10.1002/adma.201706085

  • 加载中
    1. [1]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    2. [2]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    5. [5]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    6. [6]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    7. [7]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    8. [8]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    11. [11]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    12. [12]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    13. [13]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    14. [14]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    15. [15]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    16. [16]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    17. [17]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    18. [18]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    19. [19]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    20. [20]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

Metrics
  • PDF Downloads(1)
  • Abstract views(320)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return