Citation: Ming ZHENG, Yixiao ZHANG, Jian YANG, Pengfei GUAN, Xiudong LI. Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388 shu

Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics

  • Corresponding author: Ming ZHENG, zhengm@mail.ustc.edu.cn
  • Received Date: 7 October 2023
    Revised Date: 4 January 2024

Figures(5)

  • Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCTZ∶xSm3+, x=0.0%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, mole fraction) ceramics were synthesized using the conventional solid state reaction method, and their microstructure, ferroelectricity, energy storage performance, and photoluminescence (PL) properties were systematically investigated. The results showed that the mean grain size of the ceramics decreased obviously and the density increased significantly after the addition of Sm3+. All ceramics exhibited typical ferroelectric properties. Moreover, with the further increase of doping amount, the remanent polarization (Pr) gradually decreased to 8.432 μC·cm-2 (BCTZ: 1.0%Sm3+), and the ferroelectricity was suppressed. The energy storage density of BCTZ∶1.0%Sm3+ ceramic was improved by ca. 49.0% compared with that of pure BCTZ ceramic. In addition, BCTZ∶xSm3+ceramics exhibit strong orange-red luminescence at about 596 nm under light excitation at 408 nm, and the PL intensity can be adjusted by 449%.
  • 加载中
    1. [1]

      Luo H J, Liu H, Huang H B, Song Y, Tucker M G, Sun Z, Yao Y H, Gao B T, Ren Y, Tang M X, Qi H, Deng S Q, Zhang S J, Chen J. Achieving giant electrostrain of above 1% in (Bi, Na) TiO3-based lead-free piezoelectrics via introducing oxygen-defect composition[J]. Sci. Adv., 2023,9(5)eade7078. doi: 10.1126/sciadv.ade7078

    2. [2]

      Qiu C R, Wang B, Zhang N, Zhang S J, Liu J F, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q, Li F. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020,577(7790):350-354. doi: 10.1038/s41586-019-1891-y

    3. [3]

      Zheng M, Ni H, Huang W Y, Qi Y P, Zeng J L, Gao J. Optically and electrically co-controlled resistance switching in complex oxide heterostructures[J]. Appl. Phys. Lett., 2017,111(17)172901. doi: 10.1063/1.4986864

    4. [4]

      Zheng M, Usami T, Taniyama T. Shear-strain-mediated large nonvolatile tuning of ferromagnetic resonance by an electric field in multiferroic heterostructures[J]. NPG Asia Mater., 2021,13(1)7. doi: 10.1038/s41427-020-00279-4

    5. [5]

      Chen Y, Li L F, Zhou Z, Wang Y Y, Chen Q, Wang Q Y. La2O3-modified BiYbO3-Pb(Zr, Ti)O3 ternary piezoelectric ceramics with enhanced electrical properties and thermal depolarization temperature[J]. J. Adv. Ceram., 2023,12(8):1593-1611. doi: 10.26599/JAC.2023.9220774

    6. [6]

      Zhu W M, Li C E, Guo C J, Yan L H. Influence of phase composition on the piezoelectric properties of PMN-PT ceramic[J]. J.Inorg. Mater., 2001,16(4):641-648.

    7. [7]

      Xue M P, Tang Y C, Shan Z H, Hao Y J, Zhou X X, Gao X Q, Li H Z, Pei J, Zhang B P. Deciphering the leakage conduction mechanism of BiFeO3-BaTiO3 lead-free piezoelectric ceramics[J]. J. Adv. Ceram., 2023,12(10):1844-1856. doi: 10.26599/JAC.2023.9220792

    8. [8]

      Liu W F, Ren X B. Large piezoelectric effect in Pb-free ceramics[J]. Phys. Rev. Lett., 2009,103(25)257602. doi: 10.1103/PhysRevLett.103.257602

    9. [9]

      Park S C, Nam C, Baek C, Lee M K, Lee G J, Park K I. Enhanced piezoelectric performance of composite fibers based on lead-free BCTZ ceramics and P(VDF-TrFE) piezopolymer for self-powered wearable sensors[J]. ACS Sustain. Chem. Eng., 2022,10(43):14370-14380. doi: 10.1021/acssuschemeng.2c05026

    10. [10]

      Li W, Xu Z J, Chu R Q, Fu P, Zang G Z. Piezoelectric and dielectric properties of (Ba1-xCax)(Ti0.95Zr0.05)O3 lead-free ceramics[J]. J. Am. Ceram. Soc., 2010,93(10):2942-2944. doi: 10.1111/j.1551-2916.2010.03907.x

    11. [11]

      Wu, Xiao, Wu, Chen, Zhu, Yang, Wa, J. Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1-xZrx)O3 lead-free piezoelectric ceramics[J]. J. Am. Ceram. Soc., 2012,32(4):891-898. doi: 10.1016/j.jeurceramsoc.2011.11.003

    12. [12]

      Sun H L, Wong M C, Zhou G F, Kwok K. W. Tuning electroluminescence performance in Pr-doped piezoelectric bulk ceramics and composites[J]. J. Materiomics, 2021,7(2):264-270. doi: 10.1016/j.jmat.2020.10.005

    13. [13]

      Hu Z M, Koval V, Zhang H F, Chen K, Yue Y J, Zhang D, Yan H X. Enhanced piezoelectricity in Na and Ce co-doped CaBi4Ti4O15 ceramics for high-temperature applications[J]. J. Adv. Ceram., 2023,12(7):1331-1344. doi: 10.26599/JAC.2023.9220754

    14. [14]

      Cao S Y, Chen Q, Li Y P, Wu C Y, Feng X Y, Xu J, Cheng G H, Gao F. Grain-orientation dependence about luminescence modulation behavior upon electric polarization in Sm3+ doped KSr2Nb5O15 textured ceramics[J]. Mater. Lett., 2021,295129866. doi: 10.1016/j.matlet.2021.129866

    15. [15]

      Arshad M, Du H L, Javed M S, Maqsood A, Ashraf I, Hussain S, Ma W L, Ran H P. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics[J]. Ceram. Int., 2020,46(2):2238-2246. doi: 10.1016/j.ceramint.2019.09.208

    16. [16]

      ZHAO M J, MA C Y, WEI Q L, REN G Z, JIA W T, SU C H. Preparation and luminescence properties of Eu3+-Tb3+ co-doped SiO2-B2O3-Na2O-Y2O3-P2O5 glass ceramics[J]. Chinese J. Inorg. Chem., 2021,37(4):693-699.  

    17. [17]

      Zheng M, Guan P F. Electric field control of photoluminescence response in lanthanide doped ferroelectric materials: A brief review[J]. Ferroelectrics, 2022,598(1):152-158. doi: 10.1080/00150193.2022.2102831

    18. [18]

      Guan P F, Zhang Y X, Yang J, Zheng M. Effect of Sm3+doping on ferroelectric, energy storage and photoluminescence properties of BaTiO3 ceramics[J]. Ceram. Int., 2023,49(8):11796-11802. doi: 10.1016/j.ceramint.2022.12.024

    19. [19]

      Liu C W, Wang Q L, Wu X, Sa B S, Sun H L, Luo L H, Lin C, Zheng X H, Lin T F, Sun Z M. Boosting upconversion photoluminescence and multielectrical properties via Er-doping-modulated vacancy control in Ba0.85Ca0.15Ti0.9Zr0.1O3[J]. ACS Omega, 2019,4(6):11004-11013. doi: 10.1021/acsomega.9b01391

    20. [20]

      Wang Q L, Lin J F, Zhou Y, Lin C, Lin T F, Wu X. Sm-induced multifunctionality and poling effect on luminescence of Sm-doped (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoceramics[J]. Funct. Mater. Lett., 2020,13(5)2051023. doi: 10.1142/S1793604720510236

    21. [21]

      Turik A V, Sidorenko E N. Domain switchings and dielectric properties of ferroelectric ceramics[J]. Ferroelectrics, 1999,222(1/2/3/4):345-350.

    22. [22]

      Jia H R, Yang S, Zhu W T, Li F, Wang L H. Improved piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 textured ferroelectric ceramics via Sm-doping method[J]. J. Alloy. Compd., 2021,881(10)160666.

    23. [23]

      Ali H, Masschelein P, Bruyere S, Pigeat P, Dauscher A, Rinnert H, Horwat D, Khedr M A, Giba A E. White light emission from Sm-doped YAG ceramic controlled by the excitation wavelengths[J]. Opt. Laser Technol., 2021,142107223. doi: 10.1016/j.optlastec.2021.107223

  • 加载中
    1. [1]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    9. [9]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    15. [15]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    18. [18]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    19. [19]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    20. [20]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

Metrics
  • PDF Downloads(0)
  • Abstract views(54)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return