Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne
- Corresponding author: Zhaojie WANG, wangzhaojie@upc.edu.cn
Citation: Jie ZHAO, Sen LIU, Qikang YIN, Xiaoqing LU, Zhaojie WANG. Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Wang M H, Kong L Y, LU X Q, Chi-Man L W. First-row transition metal embedded pyrazine-based graphynes as high-performance single atom catalysts for the CO2 reduction reaction[J]. J. Mater. Chem. A, 2022,10(16):9048-9058. doi: 10.1039/D2TA00654E
Song K S, Fritz P W, Coskun A. Porous organic polymers for CO2 capture, separation and conversion[J]. Chem. Soc. Rev., 2022,51(23):9831-9852. doi: 10.1039/D2CS00727D
Yu Y S, Zhang C, Ding W C, Zhang Z X, Wang G X. Determining the performance for an integrated process of COD removal and CO2 capture[J]. J. Clean. Prod., 2020,275122845. doi: 10.1016/j.jclepro.2020.122845
Zhou S N, Wang M H, Wei S X, Cao S F, Wang Z J, Liu S Y, Sun D F, Lu X Q. First-row transition-metal-doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2[J]. Mat. Today Phys., 2021,16100301. doi: 10.1016/j.mtphys.2020.100301
Liu Y, Liu W B, Wang R G, Hao L F, Jiao W C. Hydrogen storage using Na-decorated graphyne and its boron nitride analog[J]. Int. J. Hydrogen Energ., 2014,39(24):12757-12764. doi: 10.1016/j.ijhydene.2014.06.107
Zhou S N, Wang M H, Wei S X, Xin H L, Zhai W R, Xu S Y, Liu S, Liu S Y, Wang Z J, Chi-Man L W, Lu X Q. Multi-objective optimization of alkali/alkaline earth metals doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4[J]. Mat. Today Phys., 2021,21100539. doi: 10.1016/j.mtphys.2021.100539
Marsusi F, Drummond N D, Verstraete M J. The physics of single-side fluorination of graphene: DFT and DFT+U studies[J]. Carbon, 2019,144:615-627. doi: 10.1016/j.carbon.2018.12.089
Jagiello J, Thommes M. Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions[J]. Carbon, 2004,42(7):1227-1232. doi: 10.1016/j.carbon.2004.01.022
Guo C, Zhang T, Deng X X, Liang X Y, Guo W Y, Lu X Q, Chi-Man L W. Electrochemical CO2 reduction to C1 products on single nickel/cobalt/iron‑doped graphitic carbon nitride: A DFT study[J]. ChemSusChem, 2019,12(23):5126-5132. doi: 10.1002/cssc.201902483
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169
Luo K, Karasiev V V, Trickey S B. A simple generalized gradient approximation for the noninteracting kinetic energy density functional[J]. Phys. Rev. B, 2018,98(4)041111. doi: 10.1103/PhysRevB.98.041111
Dubbeldam D, Calero S, Ellis D E, Snurr R Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials[J]. Mol. Simulat., 2016,42(2):81-101. doi: 10.1080/08927022.2015.1010082
Gupta A, Chempath S, Sanborn M J, Clark L A, Snurr R Q. Object-oriented programming paradigms for molecular modeling[J]. Mol. Simul., 2003,29(1):29-46. doi: 10.1080/0892702031000065719
Potoff J J, Siepmann J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE J., 2001,47(7):1676-1682. doi: 10.1002/aic.690470719
Xu S Y, Wei S X, Wang L, Liu S, Wang M H, Liu S Y, Wang Z J, Yang T F, Lu X Q. Li-decorated β1-graphyne for high-performance CO2 capture and separation over N2[J]. Appl. Surf. Sci., 2022,605154724. doi: 10.1016/j.apsusc.2022.154724
Liu C, Liu Z X, Ye X J, Cheng P, Li Y J. First-principles study of structural, elastic and electronic properties of naphyne and naphdiyne[J]. RSC Adv., 2020,10(58):35349-35355. doi: 10.1039/D0RA07214A
Li Y J, Li Y Y, Lin P, Gu J, He X J, Yu M X, Wang X T, Liu C, Li C X. Architecture and electrochemical performance of alkynyl-linked naphthyl carbon skeleton: Naphyne[J]. ACS Appl. Mater. Interfaces, 2020,12(29):33076-33082. doi: 10.1021/acsami.0c05741
Tao L, Huang J C, Dastan D, Wang T Y, Li J, Yin X T, Qi W. CO2 capture and separation on charge-modulated calcite[J]. Appl. Surf. Sci., 2020,530147265. doi: 10.1016/j.apsusc.2020.147265
Yan B L, Yu S, Zeng C F, Yu L, Wang C Q, Zhang L X. Binderless zeolite NaX microspheres with enhanced CO2 adsorption selectivity[J]. Microporous Mesoporous Mat., 2019,278:267-274. doi: 10.1016/j.micromeso.2018.12.002
Balbuena P B, Gubbins K E. Theoretical interpretation of adsorption behavior of simple fluids in slit pores[J]. Langmuir, 1993,9(7):1801-1814. doi: 10.1021/la00031a031
Wang L, Zhao J J, Wang L L, Yan T Y, Sun Y Y, Zhang S B. Titanium-decorated graphene oxide for carbon monoxide capture and separation[J]. Phys. Chem. Chem. Phys., 2011,13(47):21126-21131. doi: 10.1039/c1cp21778j
Suraweera N S, Albert A A, Peretich M E, Abbott J, Humble J R, Barnes C E, Keffer D J. Methane and carbon dioxide adsorption and diffusion in amorphous, metal-decorated nanoporous silica[J]. Mol. Simulat., 2014,40(7/8/9):618-633.
Tian Z H, Huang J J, Zhang X, Shao G L, He Q Y, Cao S K, Yuan S G. Ultra-microporous N-doped carbon from polycondensed framework precursor for CO2 adsorption[J]. Microporous Mesoporous Mat., 2018,257:19-26. doi: 10.1016/j.micromeso.2017.08.012
Lekien F, Marsden J. Tricubic interpolation in three dimensions[J]. Int. J. Numer. Methods Eng., 2005,63(3):455-471. doi: 10.1002/nme.1296
Torres-Knoop A, Balaji S P, Vlugt T J H, Dubbeldam D. A comparison of advanced monte Carlo methods for open systems: CFCMC vs CBMC[J]. J. Chem. Theory Comput., 2014,10(3):942-952. doi: 10.1021/ct4009766
Liu A Q, Peng X, Jin Q B, Jain S K, Vicent-Luna J M, Calero S, Zhao D F. Adsorption and diffusion of benzene in Mg-MOF-74 with open metal sites[J]. ACS Appl. Mater. Interfaces, 2019,11(4):4686-4700. doi: 10.1021/acsami.8b20447
Yu J M, Xie L H, Li J R, Ma Y G, Seminario J M, Balbuena P B. CO2 capture and separations using MOFs: Computational and experimental studies[J]. Chem. Rev., 2017,117(14):9674-9754. doi: 10.1021/acs.chemrev.6b00626
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240