Citation: Jie ZHAO, Sen LIU, Qikang YIN, Xiaoqing LU, Zhaojie WANG. Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385 shu

Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne

  • Corresponding author: Zhaojie WANG, wangzhaojie@upc.edu.cn
  • Received Date: 16 October 2023
    Revised Date: 12 January 2024

Figures(8)

  • In this study, a combination of grand canonical Monte Carlo and density functional theory was employed to investigate the CO2 adsorption and separation behavior of naphyne (NY) and naphdiyne (NDY) with different alkali metal (AM, including Li, Na, and K) dopants. By analyzing the binding energy, cohesive energy, and electronic properties, it is found that AM-modified NY and NDY exhibit good structural stability. Under conditions of 298 K and 100 kPa, Li-NDY (the NDY modified by Li), exhibits a CO2 adsorption capacity of 11.37 mmol·g-1, with a selectivity for CO2 over N2 of 430.85. Furthermore, the gas adsorption density distribution elucidates the reasons behind the high adsorption capacity of AM-NY and AM-NDY and the inherent difference in their performance. Finally, the modified mechanisms introduced by the AM dopants were discussed in detail from the perspectives of adsorption heat, Coulomb and van der Waals interactions, and other factors.
  • 加载中
    1. [1]

      Wang M H, Kong L Y, LU X Q, Chi-Man L W. First-row transition metal embedded pyrazine-based graphynes as high-performance single atom catalysts for the CO2 reduction reaction[J]. J. Mater. Chem. A, 2022,10(16):9048-9058. doi: 10.1039/D2TA00654E

    2. [2]

      Song K S, Fritz P W, Coskun A. Porous organic polymers for CO2 capture, separation and conversion[J]. Chem. Soc. Rev., 2022,51(23):9831-9852. doi: 10.1039/D2CS00727D

    3. [3]

      Yu Y S, Zhang C, Ding W C, Zhang Z X, Wang G X. Determining the performance for an integrated process of COD removal and CO2 capture[J]. J. Clean. Prod., 2020,275122845. doi: 10.1016/j.jclepro.2020.122845

    4. [4]

      Zhou S N, Wang M H, Wei S X, Cao S F, Wang Z J, Liu S Y, Sun D F, Lu X Q. First-row transition-metal-doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2[J]. Mat. Today Phys., 2021,16100301. doi: 10.1016/j.mtphys.2020.100301

    5. [5]

      Liu Y, Liu W B, Wang R G, Hao L F, Jiao W C. Hydrogen storage using Na-decorated graphyne and its boron nitride analog[J]. Int. J. Hydrogen Energ., 2014,39(24):12757-12764. doi: 10.1016/j.ijhydene.2014.06.107

    6. [6]

      Zhou S N, Wang M H, Wei S X, Xin H L, Zhai W R, Xu S Y, Liu S, Liu S Y, Wang Z J, Chi-Man L W, Lu X Q. Multi-objective optimization of alkali/alkaline earth metals doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4[J]. Mat. Today Phys., 2021,21100539. doi: 10.1016/j.mtphys.2021.100539

    7. [7]

      Marsusi F, Drummond N D, Verstraete M J. The physics of single-side fluorination of graphene: DFT and DFT+U studies[J]. Carbon, 2019,144:615-627. doi: 10.1016/j.carbon.2018.12.089

    8. [8]

      Jagiello J, Thommes M. Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions[J]. Carbon, 2004,42(7):1227-1232. doi: 10.1016/j.carbon.2004.01.022

    9. [9]

      Guo C, Zhang T, Deng X X, Liang X Y, Guo W Y, Lu X Q, Chi-Man L W. Electrochemical CO2 reduction to C1 products on single nickel/cobalt/iron‑doped graphitic carbon nitride: A DFT study[J]. ChemSusChem, 2019,12(23):5126-5132. doi: 10.1002/cssc.201902483

    10. [10]

      Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169

    11. [11]

      Luo K, Karasiev V V, Trickey S B. A simple generalized gradient approximation for the noninteracting kinetic energy density functional[J]. Phys. Rev. B, 2018,98(4)041111. doi: 10.1103/PhysRevB.98.041111

    12. [12]

      Dubbeldam D, Calero S, Ellis D E, Snurr R Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials[J]. Mol. Simulat., 2016,42(2):81-101. doi: 10.1080/08927022.2015.1010082

    13. [13]

      Gupta A, Chempath S, Sanborn M J, Clark L A, Snurr R Q. Object-oriented programming paradigms for molecular modeling[J]. Mol. Simul., 2003,29(1):29-46. doi: 10.1080/0892702031000065719

    14. [14]

      Potoff J J, Siepmann J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE J., 2001,47(7):1676-1682. doi: 10.1002/aic.690470719

    15. [15]

      Xu S Y, Wei S X, Wang L, Liu S, Wang M H, Liu S Y, Wang Z J, Yang T F, Lu X Q. Li-decorated β1-graphyne for high-performance CO2 capture and separation over N2[J]. Appl. Surf. Sci., 2022,605154724. doi: 10.1016/j.apsusc.2022.154724

    16. [16]

      Liu C, Liu Z X, Ye X J, Cheng P, Li Y J. First-principles study of structural, elastic and electronic properties of naphyne and naphdiyne[J]. RSC Adv., 2020,10(58):35349-35355. doi: 10.1039/D0RA07214A

    17. [17]

      Li Y J, Li Y Y, Lin P, Gu J, He X J, Yu M X, Wang X T, Liu C, Li C X. Architecture and electrochemical performance of alkynyl-linked naphthyl carbon skeleton: Naphyne[J]. ACS Appl. Mater. Interfaces, 2020,12(29):33076-33082. doi: 10.1021/acsami.0c05741

    18. [18]

      Tao L, Huang J C, Dastan D, Wang T Y, Li J, Yin X T, Qi W. CO2 capture and separation on charge-modulated calcite[J]. Appl. Surf. Sci., 2020,530147265. doi: 10.1016/j.apsusc.2020.147265

    19. [19]

      Yan B L, Yu S, Zeng C F, Yu L, Wang C Q, Zhang L X. Binderless zeolite NaX microspheres with enhanced CO2 adsorption selectivity[J]. Microporous Mesoporous Mat., 2019,278:267-274. doi: 10.1016/j.micromeso.2018.12.002

    20. [20]

      Balbuena P B, Gubbins K E. Theoretical interpretation of adsorption behavior of simple fluids in slit pores[J]. Langmuir, 1993,9(7):1801-1814. doi: 10.1021/la00031a031

    21. [21]

      Wang L, Zhao J J, Wang L L, Yan T Y, Sun Y Y, Zhang S B. Titanium-decorated graphene oxide for carbon monoxide capture and separation[J]. Phys. Chem. Chem. Phys., 2011,13(47):21126-21131. doi: 10.1039/c1cp21778j

    22. [22]

      Suraweera N S, Albert A A, Peretich M E, Abbott J, Humble J R, Barnes C E, Keffer D J. Methane and carbon dioxide adsorption and diffusion in amorphous, metal-decorated nanoporous silica[J]. Mol. Simulat., 2014,40(7/8/9):618-633.

    23. [23]

      Tian Z H, Huang J J, Zhang X, Shao G L, He Q Y, Cao S K, Yuan S G. Ultra-microporous N-doped carbon from polycondensed framework precursor for CO2 adsorption[J]. Microporous Mesoporous Mat., 2018,257:19-26. doi: 10.1016/j.micromeso.2017.08.012

    24. [24]

      Lekien F, Marsden J. Tricubic interpolation in three dimensions[J]. Int. J. Numer. Methods Eng., 2005,63(3):455-471. doi: 10.1002/nme.1296

    25. [25]

      Torres-Knoop A, Balaji S P, Vlugt T J H, Dubbeldam D. A comparison of advanced monte Carlo methods for open systems: CFCMC vs CBMC[J]. J. Chem. Theory Comput., 2014,10(3):942-952. doi: 10.1021/ct4009766

    26. [26]

      Liu A Q, Peng X, Jin Q B, Jain S K, Vicent-Luna J M, Calero S, Zhao D F. Adsorption and diffusion of benzene in Mg-MOF-74 with open metal sites[J]. ACS Appl. Mater. Interfaces, 2019,11(4):4686-4700. doi: 10.1021/acsami.8b20447

    27. [27]

      Yu J M, Xie L H, Li J R, Ma Y G, Seminario J M, Balbuena P B. CO2 capture and separations using MOFs: Computational and experimental studies[J]. Chem. Rev., 2017,117(14):9674-9754. doi: 10.1021/acs.chemrev.6b00626

  • 加载中
    1. [1]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    2. [2]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    8. [8]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    9. [9]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    10. [10]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    13. [13]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    14. [14]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    15. [15]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    16. [16]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    19. [19]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    20. [20]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

Metrics
  • PDF Downloads(0)
  • Abstract views(206)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return