Citation: Jie ZHAO, Sen LIU, Qikang YIN, Xiaoqing LU, Zhaojie WANG. Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385 shu

Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne

  • Corresponding author: Zhaojie WANG, wangzhaojie@upc.edu.cn
  • Received Date: 16 October 2023
    Revised Date: 12 January 2024

Figures(8)

  • In this study, a combination of grand canonical Monte Carlo and density functional theory was employed to investigate the CO2 adsorption and separation behavior of naphyne (NY) and naphdiyne (NDY) with different alkali metal (AM, including Li, Na, and K) dopants. By analyzing the binding energy, cohesive energy, and electronic properties, it is found that AM-modified NY and NDY exhibit good structural stability. Under conditions of 298 K and 100 kPa, Li-NDY (the NDY modified by Li), exhibits a CO2 adsorption capacity of 11.37 mmol·g-1, with a selectivity for CO2 over N2 of 430.85. Furthermore, the gas adsorption density distribution elucidates the reasons behind the high adsorption capacity of AM-NY and AM-NDY and the inherent difference in their performance. Finally, the modified mechanisms introduced by the AM dopants were discussed in detail from the perspectives of adsorption heat, Coulomb and van der Waals interactions, and other factors.
  • 加载中
    1. [1]

      Wang M H, Kong L Y, LU X Q, Chi-Man L W. First-row transition metal embedded pyrazine-based graphynes as high-performance single atom catalysts for the CO2 reduction reaction[J]. J. Mater. Chem. A, 2022,10(16):9048-9058. doi: 10.1039/D2TA00654E

    2. [2]

      Song K S, Fritz P W, Coskun A. Porous organic polymers for CO2 capture, separation and conversion[J]. Chem. Soc. Rev., 2022,51(23):9831-9852. doi: 10.1039/D2CS00727D

    3. [3]

      Yu Y S, Zhang C, Ding W C, Zhang Z X, Wang G X. Determining the performance for an integrated process of COD removal and CO2 capture[J]. J. Clean. Prod., 2020,275122845. doi: 10.1016/j.jclepro.2020.122845

    4. [4]

      Zhou S N, Wang M H, Wei S X, Cao S F, Wang Z J, Liu S Y, Sun D F, Lu X Q. First-row transition-metal-doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2[J]. Mat. Today Phys., 2021,16100301. doi: 10.1016/j.mtphys.2020.100301

    5. [5]

      Liu Y, Liu W B, Wang R G, Hao L F, Jiao W C. Hydrogen storage using Na-decorated graphyne and its boron nitride analog[J]. Int. J. Hydrogen Energ., 2014,39(24):12757-12764. doi: 10.1016/j.ijhydene.2014.06.107

    6. [6]

      Zhou S N, Wang M H, Wei S X, Xin H L, Zhai W R, Xu S Y, Liu S, Liu S Y, Wang Z J, Chi-Man L W, Lu X Q. Multi-objective optimization of alkali/alkaline earth metals doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4[J]. Mat. Today Phys., 2021,21100539. doi: 10.1016/j.mtphys.2021.100539

    7. [7]

      Marsusi F, Drummond N D, Verstraete M J. The physics of single-side fluorination of graphene: DFT and DFT+U studies[J]. Carbon, 2019,144:615-627. doi: 10.1016/j.carbon.2018.12.089

    8. [8]

      Jagiello J, Thommes M. Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions[J]. Carbon, 2004,42(7):1227-1232. doi: 10.1016/j.carbon.2004.01.022

    9. [9]

      Guo C, Zhang T, Deng X X, Liang X Y, Guo W Y, Lu X Q, Chi-Man L W. Electrochemical CO2 reduction to C1 products on single nickel/cobalt/iron‑doped graphitic carbon nitride: A DFT study[J]. ChemSusChem, 2019,12(23):5126-5132. doi: 10.1002/cssc.201902483

    10. [10]

      Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169

    11. [11]

      Luo K, Karasiev V V, Trickey S B. A simple generalized gradient approximation for the noninteracting kinetic energy density functional[J]. Phys. Rev. B, 2018,98(4)041111. doi: 10.1103/PhysRevB.98.041111

    12. [12]

      Dubbeldam D, Calero S, Ellis D E, Snurr R Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials[J]. Mol. Simulat., 2016,42(2):81-101. doi: 10.1080/08927022.2015.1010082

    13. [13]

      Gupta A, Chempath S, Sanborn M J, Clark L A, Snurr R Q. Object-oriented programming paradigms for molecular modeling[J]. Mol. Simul., 2003,29(1):29-46. doi: 10.1080/0892702031000065719

    14. [14]

      Potoff J J, Siepmann J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE J., 2001,47(7):1676-1682. doi: 10.1002/aic.690470719

    15. [15]

      Xu S Y, Wei S X, Wang L, Liu S, Wang M H, Liu S Y, Wang Z J, Yang T F, Lu X Q. Li-decorated β1-graphyne for high-performance CO2 capture and separation over N2[J]. Appl. Surf. Sci., 2022,605154724. doi: 10.1016/j.apsusc.2022.154724

    16. [16]

      Liu C, Liu Z X, Ye X J, Cheng P, Li Y J. First-principles study of structural, elastic and electronic properties of naphyne and naphdiyne[J]. RSC Adv., 2020,10(58):35349-35355. doi: 10.1039/D0RA07214A

    17. [17]

      Li Y J, Li Y Y, Lin P, Gu J, He X J, Yu M X, Wang X T, Liu C, Li C X. Architecture and electrochemical performance of alkynyl-linked naphthyl carbon skeleton: Naphyne[J]. ACS Appl. Mater. Interfaces, 2020,12(29):33076-33082. doi: 10.1021/acsami.0c05741

    18. [18]

      Tao L, Huang J C, Dastan D, Wang T Y, Li J, Yin X T, Qi W. CO2 capture and separation on charge-modulated calcite[J]. Appl. Surf. Sci., 2020,530147265. doi: 10.1016/j.apsusc.2020.147265

    19. [19]

      Yan B L, Yu S, Zeng C F, Yu L, Wang C Q, Zhang L X. Binderless zeolite NaX microspheres with enhanced CO2 adsorption selectivity[J]. Microporous Mesoporous Mat., 2019,278:267-274. doi: 10.1016/j.micromeso.2018.12.002

    20. [20]

      Balbuena P B, Gubbins K E. Theoretical interpretation of adsorption behavior of simple fluids in slit pores[J]. Langmuir, 1993,9(7):1801-1814. doi: 10.1021/la00031a031

    21. [21]

      Wang L, Zhao J J, Wang L L, Yan T Y, Sun Y Y, Zhang S B. Titanium-decorated graphene oxide for carbon monoxide capture and separation[J]. Phys. Chem. Chem. Phys., 2011,13(47):21126-21131. doi: 10.1039/c1cp21778j

    22. [22]

      Suraweera N S, Albert A A, Peretich M E, Abbott J, Humble J R, Barnes C E, Keffer D J. Methane and carbon dioxide adsorption and diffusion in amorphous, metal-decorated nanoporous silica[J]. Mol. Simulat., 2014,40(7/8/9):618-633.

    23. [23]

      Tian Z H, Huang J J, Zhang X, Shao G L, He Q Y, Cao S K, Yuan S G. Ultra-microporous N-doped carbon from polycondensed framework precursor for CO2 adsorption[J]. Microporous Mesoporous Mat., 2018,257:19-26. doi: 10.1016/j.micromeso.2017.08.012

    24. [24]

      Lekien F, Marsden J. Tricubic interpolation in three dimensions[J]. Int. J. Numer. Methods Eng., 2005,63(3):455-471. doi: 10.1002/nme.1296

    25. [25]

      Torres-Knoop A, Balaji S P, Vlugt T J H, Dubbeldam D. A comparison of advanced monte Carlo methods for open systems: CFCMC vs CBMC[J]. J. Chem. Theory Comput., 2014,10(3):942-952. doi: 10.1021/ct4009766

    26. [26]

      Liu A Q, Peng X, Jin Q B, Jain S K, Vicent-Luna J M, Calero S, Zhao D F. Adsorption and diffusion of benzene in Mg-MOF-74 with open metal sites[J]. ACS Appl. Mater. Interfaces, 2019,11(4):4686-4700. doi: 10.1021/acsami.8b20447

    27. [27]

      Yu J M, Xie L H, Li J R, Ma Y G, Seminario J M, Balbuena P B. CO2 capture and separations using MOFs: Computational and experimental studies[J]. Chem. Rev., 2017,117(14):9674-9754. doi: 10.1021/acs.chemrev.6b00626

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    14. [14]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    15. [15]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    16. [16]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    17. [17]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    20. [20]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

Metrics
  • PDF Downloads(1)
  • Abstract views(392)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return