Citation: Mengru CAO, Guoyuan JIANG, Hongli LI, Sinong LI, Huihua SONG. Two pairs of chiral cobalt enantiomeric coordination compounds based on D-(-)-/L-(+)-4-hydroxyphenylglycine: Synthesis, crystal structures, and electrochemical recognition[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 232-246. doi: 10.11862/CJIC.20230381 shu

Two pairs of chiral cobalt enantiomeric coordination compounds based on D-(-)-/L-(+)-4-hydroxyphenylglycine: Synthesis, crystal structures, and electrochemical recognition

  • Corresponding author: Huihua SONG, songhuihua@hebtu.edu.cn
  • Received Date: 13 October 2023
    Revised Date: 15 December 2023

Figures(14)

  • Two pairs of chiral coordination compounds {[Co(D-hpg)(4,4′-bipy)(H2O)]Cl·H2O}n (1-D), {[Co(L-hpg)(4,4′-bipy)(H2O)]Cl·H2O}n (1-L), [Co(D-hpg)2(5,5′-BM-2,2′-bipy)]Cl·5.5H2O (2-D), and [Co(L-hpg)2(5,5′-BM-2,2′-bipy)] Cl·5.5H2O (2-L), where D-Hhpg=D-(-)-4-hydroxyphenylglycine, L-Hhpg=L-(+)-4-hydroxyphenylglycine, 4,4′-bipy= 4,4′-bipyridine, 5,5′-BM-2,2′-bipy=5,5′-dimethyl-2,2′-bipyridine, have been successfully synthesized. Their structures were determined by single-crystal X-ray diffraction analysis and characterized by elemental analysis, X-ray photoelectron spectra, infrared spectroscopy, solid-state circular dichroism spectra, thermogravimetric analysis, powder X-ray diffraction, and electrochemical methods. Compounds 1-D and 1-L feature 2D (4, 4) rectangular grid networks that consist of left-or right-handed helical chains. Compounds 2-D and 2-L exhibit 0D molecule structures, and further 1D supramolecular double chains are formed by hydrogen bonding. The differences in the structures of these compounds are attributed to the influence of ancillary N-donor ligands and the coordination modes of Hhpg. Moreover, compound 1-D displays electrochemically reversible redox behavior, and serves as an electrochemical sensor for efficiently detecting histidine (His) enantiomers and quantitatively determining the enantiomeric excess in the His mixture.
  • 加载中
    1. [1]

      Zhao Q Q, Yang J P, Zhang J, Wu D T, Tao Y X, Kong Y. Single-template molecularly imprinted chiral sensor for simultaneous recognition of alanine and tyrosine enantiomers[J]. Anal. Chem., 2019,91(19):12546-12552. doi: 10.1021/acs.analchem.9b03426

    2. [2]

      Chen Z, Wang Q, Wu X, Li Z, Jiang Y B. Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanoparticle based sensors[J]. Chem. Soc. Rev., 2015,44(13):4249-4263. doi: 10.1039/C4CS00531G

    3. [3]

      Zor E, Morales-Narváez E, Alpaydin S, Bingol H, Ersoz M, Merkoçi A. Graphene-based hybrid for enantioselective sensing applications[J]. Biosens. Bioelectron., 2017,87:410-416. doi: 10.1016/j.bios.2016.08.074

    4. [4]

      Guo L L, Bao L P, Yang B Z, Tao Y X, Mao H H, Kong Y. Electrochemical recognition of tryptophan enantiomers using self-assembled diphenylalanine structures induced by graphene quantum dots, chitosan and CTAB[J]. Electrochem. Commun., 2017,83:61-66. doi: 10.1016/j.elecom.2017.08.024

    5. [5]

      Chang L M, An Y Y, Li Q H, Gu Z G, Han Y F, Zhan J. N-heterocyclic carbene as a surface platform for assembly of homochiral metal-organic framework thin films in chiral sensing[J]. ACS Appl. Mater. Interfaces, 2020,12(34):38357-38364. doi: 10.1021/acsami.0c09578

    6. [6]

      Li Z Y, Xu H, Wu D T, Zhang J, Liu X R, Gao S M, Kong Y. Electrochemical chiral recognition of tryptophan isomers based on nonionic surfactant-assisted molecular imprinting sol-gel silica[J]. ACS Appl. Mater. Interfaces, 2019,11(3):2840-2848. doi: 10.1021/acsami.8b19399

    7. [7]

      Xu X M, Zhou X M, Qu L, Wang L, Song J T, Wu D H, Zhou W L, Zhou X G, Xiang H F, Wang J, Liu J. Reversible chromatic change of supramolecular gels for visual and selective chiral recognition of histidine[J]. ACS Appl. Bio Mater., 2020,3(10):7236-7242. doi: 10.1021/acsabm.0c01063

    8. [8]

      Zhou Y Y, Xie K, Kong L Y, Chen F, Sun D Y. Highly selective electrochemiluminescent probe to histidine[J]. J. Electroanal. Chem., 2017,799:122-125. doi: 10.1016/j.jelechem.2017.05.054

    9. [9]

      Kopple J D, Swendseid M E. Evidence that histidine is an essential amino acid in normal and chronically uremic man[J]. J. Clin. Investig., 1975,55(5):881-891. doi: 10.1172/JCI108016

    10. [10]

      Kumari B, Kundu S, Ghosh K, Banerjee M, Pradhan S K, Islam S M, Brandão P, Félix V, Das D. Exploring (bio)catalytic activities of structurally characterized Cu(Ⅱ) and Mn(Ⅲ) compounds: Histidine recognition and photocatalytic application of Cu(Ⅱ) complex and derived CuO nano-cubes[J]. Dalton Trans., 2018,47:14008-14016. doi: 10.1039/C8DT03007C

    11. [11]

      Patel G, Menon S. Recognition of lysine, arginine and histidine by novel p-sulfonatocalix[4]arene thiol functionalized gold nanoparticles in aqueous solution[J]. Chem. Commun., 2009(24):3563-3565. doi: 10.1039/b905141d

    12. [12]

      Wang X J, Miao Q Q, Song T G, Yuan Q P, Gao J H, Liang G L. A fluorescent switch for sequentially and selectively sensing copper(Ⅱ) and L-histidine in vitro and in living cells[J]. Analyst, 2014,139(13):3360-3364. doi: 10.1039/C4AN00410H

    13. [13]

      Antoine F R, Wei C I, Littell R C, Marshall M R. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization[J]. J. Agric. Food Chem., 1999,47(12):5100-5107. doi: 10.1021/jf990032+

    14. [14]

      Xia Q, Lin X, Yang C C, Ma J, Fu Y Z. The application of poly(glutathione disulfide)-poly(L-lysine) multilayer films for the enantioselective interaction with ascorbic acid and isoascorbic acid[J]. J. Electrochem. Soc., 2016,163(14):B744-B750. doi: 10.1149/2.1251614jes

    15. [15]

      Wu D T, Pan F, Gao L, Tao Y X, Kong Y. Enantioselective limiting transport into a fixed cavity via supramolecular interaction for the chiral electroanalysis of amino acids regardless of electroactive units[J]. Anal. Chem., 2020,92(20):13711-13717. doi: 10.1021/acs.analchem.0c00554

    16. [16]

      Wu D T, Ma C, Pan F, Tao Y X, Kong Y. Strategies to achieve a ferrocene-based polymer with reversible redox activity for chiral electroanalysis of nonelectroactive amino acids[J]. Anal. Chem., 2021,93(29):10160-10166. doi: 10.1021/acs.analchem.1c01158

    17. [17]

      Kuang R, Zheng L Y, Chi Y H, Shi J M, Chen X X, Zhang C C. Highly efficient electrochemical recognition and quantification of amine enantiomers based on a guest-free homochiral MOF[J]. RSC Adv., 2017,7(19):11701-11706. doi: 10.1039/C7RA00205J

    18. [18]

      Dong L Q, Zhang Y S, Duan X M, Zhu X F, Sun H, Xu J K. Chiral PEDOT-based enantioselective electrode modification material for chiral electrochemical sensing: Mechanism and model of chiral recognition[J]. Anal. Chem., 2017,89(18):9695-9702. doi: 10.1021/acs.analchem.7b01095

    19. [19]

      Rodriguez J, Bourissou D. Well-defined chiral gold(Ⅲ) compounds: New opportunities in asymmetric catalysis[J]. Angew. Chem. Int. Ed., 2018,57(2):386-388. doi: 10.1002/anie.201710105

    20. [20]

      He X X, Liu Y, Lv Y, Dong Y Y, Hu G H, Zhou S, Xu Y. L- and D-[LnZn(IN)3(C2H4O2)]n (Ln=Eu, Sm, and Gd): Chiral enantiomerically 3D 3d-4f coordination polymers constructed by interesting butterfly-like building units and —[Ln—O—Zn]n—helices[J]. Inorg. Chem., 2016,55(5):2048-2054. doi: 10.1021/acs.inorgchem.5b02372

    21. [21]

      Wang C H, Kaneti Y V, Bando Y, Lin J J, Liu C, Li J S, Yamauchi Y. Metal-organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion[J]. Mater. Horiz., 2018,5(3):394-407. doi: 10.1039/C8MH00133B

    22. [22]

      Cruz C, Gonzalez C, Rubio F, Erices J, Wrighton-Araneda K, Cortés-Arriagada D, Venegas-Yazigi D, Audebrand N, Paredes-García V. Chiral 1D metal-organic materials based on Cu(Ⅱ) and amino acid Schiff bases[J]. Cryst. Growth Des., 2021,22(1):237-250.

    23. [23]

      Zilberg R A, Berestova T V, Gizatov R R, Teres Y B, Galimov M N, Bulysheva E O. Chiral selectors in voltametric sensors based on mixed phenylalanine/alanine Cu(Ⅱ) and Zn(Ⅱ) complexes[J]. Inorganics, 2022,10(8)112. doi: 10.3390/inorganics10080112

    24. [24]

      Zhang X, Wang J, Yang S D. Enantioselective cobalt-catalyzed reductive cross-coupling for the synthesis of axially chiral phosphine-olefin ligands[J]. ACS Catal., 2021,11(22):14008-14015. doi: 10.1021/acscatal.1c04128

    25. [25]

      Areas E S, Junior H C, Freitas B P, Ferreira G B, Guedes G P. Homobinuclear compounds based on a chiral oxazolidine ligand: from solid state study to aqueous solution dynamics[J]. Inorg. Chim. Acta, 2022,529120664. doi: 10.1016/j.ica.2021.120664

    26. [26]

      Zhai B, Li Z Y, Zhang X F, Wu X X, Guo J H, Huo J Z, Ding B. Synthesis, structures, magnetic and luminescent properties of a series of iron(Ⅱ) and zinc(Ⅱ) coordination frameworks with versatile 4-substituted 1,2,4-triazole ligands[J]. Z. Anorg. Allg. Chem., 2016,642(3):260-267. doi: 10.1002/zaac.201500768

    27. [27]

      Wang Y L, Chen L, Liu C M, Du Z Y, Chen L L, Liu Q Y. 3D chiral and 2D achiral cobalt(Ⅱ) compounds constructed from a 4-(benzimidazole-1-yl) benzoic ligand exhibiting field-induced single-ion-magnet-type slow magnetic relaxation[J]. Dalton Trans., 2016,45(18):7768-7775. doi: 10.1039/C6DT00676K

    28. [28]

      Zhang T, Huang H Q, Cheng X Y, Guo D, Mei H X, Huang R B, Zheng L S. The synthesis and chiral crystal structures of two enantiomers of a Ag helical coordination polymer based on argentophilicity[J]. CrystEngComm, 2016,18:670-673. doi: 10.1039/C5CE01948F

    29. [29]

      Mei H X, Zhang T, Wang D F, Huang R B, Zheng L S. A Zn-oxalate helix linked by a water helix: Spontaneous chiral resolution of a Zn helical coordination polymer[J]. New J. Chem., 2015,39:2075-2080. doi: 10.1039/C4NJ02017K

    30. [30]

      Durá G, Carrión M C, Jalón F A, Rodríguez A M, Manzano B R. Self-assembly of silver(Ⅰ) and ditopic heteroscorpionate ligands. Spontaneous chiral resolution in helices and sequence isomerism in coordination polymers[J]. Cryst. Growth Des., 2013,13:3275-3282. doi: 10.1021/cg400636a

    31. [31]

      Ou G C, Li Z Z, Zhang M, Yuan X Y. Chiral resolution of L- and D-alanine and a racemic macrocyclic nickel(Ⅱ) complex: Synthesis and crystal structures[J]. Transition Met. Chem., 2014,39:135-140. doi: 10.1007/s11243-013-9782-9

    32. [32]

      Tao W A, Zhang D X, Nikolaev E N, Cooks R G. Copper(Ⅱ)-assisted enantiomeric analysis of D, L-amino acids using the kinetic method: Chiral recognition and quantification in the gas phase[J]. J. Am. Chem. Soc., 2000,122:10598-10609. doi: 10.1021/ja000127o

    33. [33]

      Sheldrick G M. SHELXS-97, Program for the solution of crystal structures. University of Göttingen, Germany, 1997.

    34. [34]

      Sheldrick G M. SHELXL-97, Program for the refinement of crystal structures. University of Göttingen, Germany, 1997.

    35. [35]

      Wei H W, Yang Q F, Lai X Y, Wang X Z, Yang T L, Hou Q, Liu X Y. Field-induced slow relaxation of magnetization in a distorted octahedral mononuclear high-spin Co(Ⅱ) complex[J]. CrystEngComm, 2018,20(7):962-968. doi: 10.1039/C7CE01981E

    36. [36]

      Mikuriya M, Indrawati R, Hashido R, Matsubara S, Nakamura C, Yoshioka D, Yokota K, Fukuzaki M, Handa M. Chain compounds based on paddle-wheel copper(Ⅱ) carboxylate bearing four nitroxide radicals[J]. Magnetochemistry, 2018,4(2)22. doi: 10.3390/magnetochemistry4020022

    37. [37]

      Jassal A K. Advances in ligand-unsupported argentophilic interactions in crystal engineering: An emerging platform for supramolecular architectures[J]. Inorg. Chem. Front., 2020,7(19):3735-3764. doi: 10.1039/D0QI00447B

    38. [38]

      Liang K L, Lu L J, Liu X, Yang D L, Wang S C, Gao Y M, Alhumade H, Yi H, Lei A W. Electrochemical cobalt-catalyzed cyclotrimerization of alkynes to 1,2,4-substituted arenes[J]. ACS Catal., 2021,11(24):14892-14897. doi: 10.1021/acscatal.1c04639

  • 加载中
    1. [1]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    6. [6]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    11. [11]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    12. [12]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    15. [15]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    16. [16]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    17. [17]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    18. [18]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    19. [19]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    20. [20]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

Metrics
  • PDF Downloads(2)
  • Abstract views(388)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return