Citation: Yishou WANG, Sha BAI, Yaoyu WANG, Yingfeng HAN. Controllable synthesis of polyimidazolium macrocycles based on metal-N-heterocyclic carbene templates[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 221-231. doi: 10.11862/CJIC.20230378 shu

Controllable synthesis of polyimidazolium macrocycles based on metal-N-heterocyclic carbene templates

Figures(3)

  • In this investigation, we have devised a highly proficient methodology for synthesizing covalent organic macrocycles. The reaction involving bisimidazolium salts H2-L1(BF4)2 (L1=A1, B1) with silver oxide resulted in the formation of binuclear silver metallacycles of the [Ag2(L1)2](BF4)2 (L1=A1, B1) classification. These metallacycles manifest olefinic appendages originating from two discrete dicarbene-bridged ligands arranged in pairs. Successive metal-carbene-templated ring-closing metathesis (RCM) precipitated the generation of two carbon-carbon double bonds connecting the two di-NHC ligands, thereby yielding cyclized binuclear silver metallacycles [Ag2(L2)](BF4)2 (L2=A2, B2). Subsequent removal of the metal ions led to the formation of covalent organic macrocycles H4-L2(BF4)4 (L2=A2, B2) with a substantial internal cavity. The dimensions and configuration of these polyimidazolium macrocycles can be facilely manipulated by adjusting the length and breadth of the bridging units in the ligands. Preliminary investigations indicate the potential applicability of this receptor in iodide sensing, detection, and recognition.
  • 加载中
    1. [1]

      Chen L, Chen Q H, Wu M Y, Jiang F L, Hong M C. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks[J]. Acc. Chem. Res., 2015,48(2):201-210. doi: 10.1021/ar5003076

    2. [2]

      Pullen S, Clever G H. Mixed-ligand metal-organic frameworks and heteroleptic coordination cages as multifunctional scaffolds—A comparison[J]. Acc. Chem. Res., 2018,51(12):3052-3064. doi: 10.1021/acs.accounts.8b00415

    3. [3]

      Zheng J, Lu Z, Wu K, Ning G H, Li D. Coinage-metal-based cyclic trinuclear complexes with metal-metal interactions: theories to experiments and structures to functions[J]. Chem. Rev., 2020,120(17):9675-9742. doi: 10.1021/acs.chemrev.0c00011

    4. [4]

      TAO Y L, CHEN W C, WANG X L, SU Z M. Synthesis, crystal structures and fluorescence properties of two nanosized Zr-based molecular capsules[J]. Chinese J. Inorg. Chem., 2019,35(11):2108-2116. doi: 10.11862/CJIC.2019.224

    5. [5]

      YU Y C, WANG H L, LI L L, HE C. Anthraquinone-based metal-organic cages as efficient photocatalysts for oxidation reactions[J]. Chinese J. Inorg. Chem., 2023,39(9):1649-1660.

    6. [6]

      GUO T T, AN Y Y, ZHAO D, YAN J Z. Polyoxometalate-directing calix[4]resorcinarene-based giant[Co8] coordination cage: Self-assembly and electrochemical performance[J]. Chinese J. Inorg. Chem., 2023,39(9):1791-1799.

    7. [7]

      Ward M D, Hunter C A, Williams N H. Coordination cages based on bis(pyrazolylpyridine) ligands: structures, dynamic behavior, guest binding, and catalysis[J]. Acc. Chem. Res., 2018,51(9):2073-2082. doi: 10.1021/acs.accounts.8b00261

    8. [8]

      Jongkind L J, Caumes X, Hartendorp A P T, Reek J N H. Ligand template strategies for catalyst encapsulation[J]. Acc. Chem. Res., 2018,51(9):2115-2128. doi: 10.1021/acs.accounts.8b00345

    9. [9]

      Fang Y, Powell J A, Li E, Wang Q, Perry Z, Kirchon A, Yang X Y, Xiao Z F, Zhu C F, Zhang L L, Huang F H, Zhou H C. Catalytic reactions within the cavity of coordination cages[J]. Chem. Soc. Rev., 2019,48(17):4707-4730. doi: 10.1039/C9CS00091G

    10. [10]

      Sinha I, Mukherjee P S. Chemical transformations in confined space of coordination architectures[J]. Inorg. Chem., 2018,57(8):4205-4221. doi: 10.1021/acs.inorgchem.7b03067

    11. [11]

      Roberts D A, Pilgrim B S, Nitschke J R. Covalent post-assembly modification in metallosupramolecular chemistry[J]. Chem. Soc. Rev., 2018,47(2):626-644. doi: 10.1039/C6CS00907G

    12. [12]

      Levin E, Ivry E, Diesendruck C E, Lemcoff N G. Water in N-heterocyclic carbene-assisted catalysis[J]. Chem. Rev., 2015,115(11):4607-4692. doi: 10.1021/cr400640e

    13. [13]

      Narayan S, Hahn F E. Metallosupramolecular architectures obtained from poly-N-heterocyclic carbene ligands[J]. Acc. Chem. Res., 2017,50(9):2167-2184. doi: 10.1021/acs.accounts.7b00158

    14. [14]

      Zhong R, Lindhorst A C, Groche F J, Kühn F E. Immobilization of N-heterocyclic carbene compounds: A synthetic perspective[J]. Chem. Rev., 2017,117(3):1970-2058. doi: 10.1021/acs.chemrev.6b00631

    15. [15]

      Lindhorst A C, Kaspar M, Altmann P J, Pöthig A, Kühn F E. Synthesis, characterization and derivatization of hydroxyl-functionalized iron(Ⅱ) bis(NHC) complexes[J]. Dalton Trans., 2018,47(6):1857-1867. doi: 10.1039/C7DT04774F

    16. [16]

      Bai S, Han Y F. Metal-N-heterocyclic carbene chemistry directed toward metallosupramolecular synthesis and beyond[J]. Acc. Chem. Res., 2023,56(10):1213-1227. doi: 10.1021/acs.accounts.3c00102

    17. [17]

      Zhang L, Das R, Li C T, Wang Y Y, Hahn F E, Hua K, Sun L Y, Han Y F. C3-symmetric assemblies from trigonal polycarbene ligands and MI ions for the synthesis of three-dimensional polyimidazolium cations[J]. Angew. Chem. Int. Ed., 2019,58(38):13360-13364. doi: 10.1002/anie.201907003

    18. [18]

      Wang Y S, Li H, Bai S, Wang Y Y, Han Y F. N-Heterocyclic carbene-stabilized platinum nanoparticles within a porphyrinic nanocage for selective photooxidation[J]. Sci. China Chem., 2023,66(3):778-782.

    19. [19]

      Wang Y S, Feng T, Wang Y Y, Hahn F E, Han Y F. Homo- and heteroligand poly-NHC metal assemblies: Synthesis by narcissistic and social self-sorting[J]. Angew. Chem. Int. Ed., 2018,57(48):15767-15771. doi: 10.1002/anie.201810010

    20. [20]

      Wang Y S, Bai S, Wang Y Y, Han Y F. Process-tracing study on the post-assembly modification of poly-NHC-based metallosupramolecular cylinders with tunable aggregation-induced emission[J]. Chem. Commun., 2019,55(91):13689-13692. doi: 10.1039/C9CC07113J

    21. [21]

      Wang Y S, Sun L Y, Wang Y Y, Han Y F. Phase-mediated controllable intramolecular and intermolecular photocycloadditions assisted by supramolecular templates[J]. Sci. China Chem., 2022,65(6):1129-1133. doi: 10.1007/s11426-022-1237-x

    22. [22]

      WANG Z G, BIAN Q Q, HUANG B M, DENG Y, LIU S M. Synthesis, crystal structure and catalytic behavior of linear N-heterocyclic carbene silver[Ag(MEIm)2]+[AgI2]- (MEIm=1-methyl-3-ethyl-imidazolyl)[J]. Chinese J. Inorg. Chem., 2012,28(1):191-194.

    23. [23]

      LI X W, WANG X B, XU H J, YU X J, ZHUO S P. Synthesis, crystal structure and catalytic properties of ruthenium complexes bearing N-heterocyclic carbene ligand[J]. Chinese J. Inorg. Chem., 2014,30(6):1381-1387.

    24. [24]

      YANG B B, ZHAO F, XU S X, HE H F. Syntheses and luminescent properties of green phosphorescent four-coordinated N-heterocyclic carbene copper(Ⅰ) complexes[J]. Chinese J. Inorg. Chem., 2019,35(6):1020-1026.

    25. [25]

      Zhang Y F, Zhang Y W, Li Xin, Sun L Y, Han Y F. Synthesis of triarylborane-centered N-heterocyclic carbene cages with tunable photophysical properties[J]. Chem. Commun., 2023,59(16):2291-2294. doi: 10.1039/D2CC06584C

    26. [26]

      Zhang Y F, Li X, Zhang H, Wang X Q, Sun L Y, Duan X L, Han Y F. Gold(Ⅰ) N-heterocyclic carbene complexes with tunable electronic properties for sensitive colorimetric detection of glutathione[J]. Mater. Chem. Front., 2023,7(14):2880-2888. doi: 10.1039/D3QM00167A

    27. [27]

      Jin G F, Zhang Y Z, Yu L, Jiang W L, Li Y, Sun L Y, Li P, Han Y F. Radical organometallic nanocages with redox switchable poly-NHC ligands[J]. Nano Res., 2023,16(7):10678-10683. doi: 10.1007/s12274-023-5690-2

    28. [28]

      Li M, Li Y, Li X, Wang F, Han Y F. An ultralong low-temperature phosphorescent pentagonal prismatic organometallic cylinder featuring pentaphenylpyrrole-N-heterocyclic carbenes[J]. Chin. J. Chem., 2023,41(12):1431-1436. doi: 10.1002/cjoc.202300026

    29. [29]

      Wang C, Zhu Q W, Yu J G, Li X, Li H, Sun L Y, Han Y F. Hierarchical self-assembly of a radical naphthalenediimide-based N-heterocyclic carbene-Au(Ⅰ) macrocycle[J]. Inorg. Chem. Front., 2023,10(5):1457-1464. doi: 10.1039/D2QI02685F

    30. [30]

      Zhang H, Li Y, Zhang Y F, Qiao X J, Sun L Y, Li J L, Wang Y Y, Han Y F. Solvato-controlled assembly and structural transformation of emissive poly-NHC-based organometallic cages and their applications in amino acid sensing and fluorescence imaging[J]. Chem.-Eur. J., 2023,29(23)e202300209. doi: 10.1002/chem.202300209

    31. [31]

      Patil S A, Patil S A, Patil R. Medicinal applications of (benz)imidazole- and indole-based macrocycles[J]. Chem. Biol. Drug Des., 2017,89(4):639-649. doi: 10.1111/cbdd.12802

    32. [32]

      Ermert P. Design, properties and recent application of macrocycles in medicinal chemistry[J]. Chimia, 2017,71(10):678-702. doi: 10.2533/chimia.2017.678

    33. [33]

      Barlow T M A, Tourwé D, Ballet S. Cyclisation to form small, medium and large rings using catalyzed and uncatalysed azide-alkyne cycloadditions (AACs)[J]. Eur. J. Org. Chem., 2017,2017(32):4678-4694. doi: 10.1002/ejoc.201700521

    34. [34]

      Ball M, Zhang B, Zhong Y, Fowler B, Xiao S, Ng F, Steigerwald M, Nuckolls C. Conjugated macrocycles in organic electronics[J]. Acc. Chem. Res., 2019,52(4):1068-1078. doi: 10.1021/acs.accounts.9b00017

    35. [35]

      Mortensen K T, Osberger T J, King T A, Sore H F, Spring D R. Strategies for the diversity-oriented synthesis of macrocycles[J]. Chem. Rev., 2019,119(17):10288-10317. doi: 10.1021/acs.chemrev.9b00084

    36. [36]

      Villemi D. Synthese de macrolides par methathese[J]. Tetrahedron Lett., 1980,21(18):1715-1718. doi: 10.1016/S0040-4039(00)77818-X

    37. [37]

      Tsuji J, Hashiguchi S. Application of olefin metathesis to organic synthesis. Syntheses of civetone and macrolides[J]. Tetrahedron Lett., 1980,2(31):2955-2958.

    38. [38]

      Altmann K H. The merger of natural product synthesis and medicinal chemistry: on the chemistry and chemical biology of epothilones[J]. Org. Biomol. Chem., 2004,2(15):2137-2152. doi: 10.1039/b405839a

    39. [39]

      Zhang R Z, Liu Z Y. Recent progress in the synthesis of epothilones[J]. Curr. Org. Chem., 2004,8(4):267-290. doi: 10.2174/1385272043485927

    40. [40]

      Nishioka T, Iwabuchi Y, Irie H, Hatakeyama S. Concise enantioselective synthesis of (+)-aspicilin based on a ruthenium catalyzed olefin metathesis reaction[J]. Tetrahedron Lett., 1980,39(31):5597-5600.

    41. [41]

      Schrock R R, Czekelius C. Recent advances in the syntheses and applications of molybdenum and tungsten alkylidene and alkylidyne catalysts for the metathesis of alkenes and alkynes[J]. Adv. Synth. Catal., 2007,349(1/2):55-77.

    42. [42]

      Vougloukalakis G J, Grubbs R H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts[J]. Chem. Rev., 2010,110(3):1746-1787. doi: 10.1021/cr9002424

    43. [43]

      Bieniek M, Michrowska A, Usanov D L, Grela K. In an attempt to provide a user's guide to the galaxy of benzylidene, alkoxybenzylidene, and indenylidene ruthenium olefin metathesis catalysts[J]. Chem. Eur. J., 2008,14(3):806-818. doi: 10.1002/chem.200701340

    44. [44]

      Conrad J C, Eelman M D, Silva J A D, Monfere S, Parnas H, Snelgrove J L, Fogg D E. Oligomers as intermediates in ring-closing metathesis[J]. J. Am. Chem. Soc., 2007,129(5):1024-1025. doi: 10.1021/ja067531t

    45. [45]

      Hiraoka S, Yamauchi Y, Arakane R, Shionoya M. Template-directed synthesis of a covalent organic capsule based on a 3 nm-sized metallocapsule[J]. J. Am. Chem. Soc., 2009,131(33):11646-11647. doi: 10.1021/ja903324r

    46. [46]

      Kim I, Ko K C, Lee W R, Cho J, Moon J H, Moon D, Sharma A, Lee J Y, Kim J S, Kim S. Calix[n]triazoles and related conformational studies[J]. Org. Lett., 2017,19(20):5509-5512. doi: 10.1021/acs.orglett.7b02557

    47. [47]

      Beuerle F, Gole B. Covalent organic frameworks and cage compounds: Design and applications of polymeric and discrete organic scaffolds[J]. Angew. Chem. Int. Ed., 2018,57(18):4850-4878. doi: 10.1002/anie.201710190

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    3. [3]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    4. [4]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    5. [5]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    6. [6]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    7. [7]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    8. [8]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    9. [9]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    10. [10]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    11. [11]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    12. [12]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    13. [13]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    14. [14]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    15. [15]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    16. [16]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    17. [17]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    18. [18]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    19. [19]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    20. [20]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

Metrics
  • PDF Downloads(2)
  • Abstract views(358)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return