Citation: Xinyu ZENG, Guhua TANG, Jianming OUYANG. Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374 shu

Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals

  • Corresponding author: Jianming OUYANG, toyjm@jnu.edu.cn
  • Received Date: 10 October 2023
    Revised Date: 20 May 2024

Figures(11)

  • To explore the regulatory effect of Desmodium styracifolium polysaccharides before and after carboxymethylation (DSPs) on the nucleation, growth and aggregation of calcium oxalate (CaC2O4) crystals, the CaC2O4 crystals regulated by DSPs with different carboxyl (—COOH) contents (mass fractions) were characterized by FTIR, powder X-ray diffraction, scanning electron microscope, ζ potential and thermogravimetric analysis (TGA). The protective effect of DSPs on human renal proximal tubular epithelial cells (HK-2 cells) was evaluated by examining adhesion molecule expression and nano-COM (nano calcium oxalate monohydrate) cell adhesion. The results show that DSPs can inhibit the growth of COM crystals, induce the formation of calcium oxalate dihydrate (COD) crystals, increase the absolute value of ζ potential on the surface of CaC2O4 crystals, and inhibit aggregation between crystals. When the —COOH content in the polysaccharide increased from 1.17% to 7.45%, 12.2% and 17.7%, the ability of DSP0, DSP1, DSP2 and DSP3 to regulate the growth of CaC2O4 crystals increased in sequence. TGA shows that polysaccharides are adsorbed in the crystal. In the presence of 0.2 g·L-1 DSPs, the mass fractions of DSP0, DSP1, DSP2 and DSP3 incorporated into the crystals were 1.54%, 2.94%, 7.96% and 8.12%, respectively. Cell experiments show that DSPs can significantly reduce the expression of adhesion molecules CD44 and Annexin A2 on the surface of HK-2 cells, and reduce the amount of nano-COM adhesion on the cell surface. DSPs can inhibit the nucleation, aggregation, and growth of CaC2O4 crystals, and reduce the adhesion of nano-COM on renal epithelial cells, all these are beneficial to inhibit the formation of CaC2O4 kidney stones, among which DSP3 with the highest degree of carboxylation has the best effect.
  • 加载中
    1. [1]

      Siener R, Herwig H, Rüdy J, Schaefer R M, Lossin P. Urinary stone composition in Germany: Results from 45, 783 stone analyses[J]. World J. Urol., 2022,40(7):1813-1820. doi: 10.1007/s00345-022-04060-w

    2. [2]

      Tian Y, Han G, Qu R, Xiao C. Major and trace elements in human kidney stones: A preliminary investigation in Beijing, China[J]. Minerals, 2022,12(5)512. doi: 10.3390/min12050512

    3. [3]

      Onal E G, Tekgul H. Assessing kidney stone composition using smartphone microscopy and deep neural networks[J]. BJUI Compass, 2022,3(4):310-315. doi: 10.1002/bco2.137

    4. [4]

      Van de Perre E, Bazin D, Estrade V, Bouderlique E, Wissing K M, Daudon M, Letavernier E. Randall's plaque as the origin of idiopathic calcium oxalate stone formation: An update[J]. C. R. Chim., 2021,25(S1):373-391.

    5. [5]

      Maruyama M, Sawada K P, Tanaka Y, Okada A, Momma K. Quantitative analysis of calcium oxalate monohydrate and dihydrate for elucidating the formation mechanism of calcium oxalate kidney stones[J]. PloS One, 2023,18(3)e0282743. doi: 10.1371/journal.pone.0282743

    6. [6]

      Song Q L, Song C, Chen X, Xiong Y H, Li L J, Liao W B, Xue L J, Yang S X. FKBP5 deficiency attenuates calcium oxalate kidney stone formation by suppressing cell-crystal adhesion, apoptosis and macrophage M1 polarization via inhibition of NF-κB signaling[J]. Cell. Mol. Life Sci., 2023,80(10)301. doi: 10.1007/s00018-023-04958-7

    7. [7]

      Kuang S D, Liu L M, Hu Z R, Luo M, Fu X Y, Lin C X, He Q H. A review focusing on the benefits of plant-derived polysaccharides for osteoarthritis[J]. Int. J. Biol. Macromol., 2023,228:582-593. doi: 10.1016/j.ijbiomac.2022.12.153

    8. [8]

      Zhu Y Y, Feng X W, Guo J H, Wang L, Guo X D, Zhu X Z. A review of extraction, purification, structural properties and biological activities of legumes polysaccharides[J]. Front. Nutr., 2022,91021448. doi: 10.3389/fnut.2022.1021448

    9. [9]

      CHEN Y, ZHENG Y K, LI D B, XING Y Y. Effects of plant polysaccharides on endoplasmic reticulum stress-mediated apoptosis, inflammation and oxidative damage of animal cells and their mechanisms[J]. Chinese Journal of Animal Nutrition, 2023,35(12):7641-7647. doi: 10.12418/CJAN2023.694

    10. [10]

      Xie L M, Shen M Y, Wang Z J, Xie J H. Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review[J]. Trends Food Sci. Technol., 2021,118:539-557. doi: 10.1016/j.tifs.2021.09.016

    11. [11]

      Liu F, Liu Y, Feng X, Ibrahim S A, Huang W. Structure characterization and in vitro immunomodulatory activities of carboxymethyl pachymaran[J]. Int. J. Biol. Macromol., 2021,178:94-103. doi: 10.1016/j.ijbiomac.2021.02.046

    12. [12]

      Zhao T, Guo Y C, Yan S Y, Li N, Ji H C, Hu Q H, Zhang M, Li Q, Gao H, Yang L Q, Wu X Y. Preparation, structure characterization of carboxymethylated schisandra polysaccharides and their intervention in immunotoxicity to polychlorinated biphenyls[J]. Process Biochem., 2022,115:30-41. doi: 10.1016/j.procbio.2022.02.005

    13. [13]

      Kagimura F Y, da Cunha M A, Theis T V, Malfatti C R, Dekker R F, Barbosa A M, Teixeira S D, Salome K. Carboxymethylation of (1→6)-β-glucan (lasiodiplodan): Preparation, characterization and antioxidant evaluation[J]. Carbohydr. Polym., 2015,127:390-399. doi: 10.1016/j.carbpol.2015.03.045

    14. [14]

      Wotschadlo J, Liebert T, Heinze T, Wagner K, Schnabelrauch M, Dutz S, Müller R, Steiniger F, Schwalbe M, Kroll T C, Höffken K, Buske N, Clement J H. Magnetic nanoparticles coated with carboxymethylated polysaccharide shells—Interaction with human cells[J]. J. Magn. Magn. Mater., 2009,321(10):1469-1473. doi: 10.1016/j.jmmm.2009.02.069

    15. [15]

      Lai Y C, Zheng H X, Sun X, Lin J, Li Q Y, Huang H N, Hou Y, Zhong H Z, Zhang D F, Tang F C, He Z H. The advances of calcium oxalate calculi associated drugs and targets[J]. Eur. J. Pharmacol., 2022,935175324. doi: 10.1016/j.ejphar.2022.175324

    16. [16]

      ZHANG H X, TANG X L, LIN Q J, CHEN H S, LIN W G, LIANG X B, LI X, GUAN Y. Comparison of the in vitro lipid-lowering and hypoglycemic activities of Desmodium styracifolium extracts with different polarities[J]. Modern Food Science and Technology, 2023,39(12):192-198.  

    17. [17]

      Li X, Chen C, Zhang T J, Ding N, Zheng P Y, Yang M. Comparative pharmacokinetic studies of five C-glycosylflavones in normal and urolithiasis model rats following administration of total flavonoids from Desmodium styracifolium by liquid chromatography-tandem mass spectrometry[J]. J. Sep. Sci., 2022,45(15):2901-2913. doi: 10.1002/jssc.202200010

    18. [18]

      Li X, Liu C X, Liang J, Zhou L, Li J, Chen H Y, Jiang T M, Guang Y, Khoo H E. Antioxidative mechanisms and anticolitic potential of Desmodium styracifolium (Osb.) Merr. in DSS-induced colitic mice[J]. J. Funct. Foods, 2022,93105077. doi: 10.1016/j.jff.2022.105077

    19. [19]

      Liu Q, Chen J, Liao Z M, Hu S W, Xu J, Yan W, Zeng L Q, Zhang Z M, Gao W X. Randomized, double-blind, placebo parallel controlled clinical study on the treatment of ureteral calculi with total flavonoids of Desmodium styracifolium[J]. J. Clin. Urol., 2023,38(4):246-250.

    20. [20]

      Tang G H, Liu J H, Sun X Y, Ouyang J M. Carboxymethylation of Desmodium styracifolium polysaccharide and its repair effect on damaged HK-2 cells[J]. Oxidative Med. Cell. Longev., 20222082263.

    21. [21]

      Huang L S, Sun X Y, Gui Q, Ouyang J M. Effects of plant polysaccharides with different carboxyl group contents on calcium oxalate crystal growth[J]. CrystEngComm, 2017,19(32):4838-4847. doi: 10.1039/C7CE00983F

    22. [22]

      Donnet M, Jongen N, Lemaitre J, Bowen P. New morphology of calcium oxalate trihydrate precipitated in a segmented flow tubular reactor[J]. J. Mater. Sci. Lett., 2000,19:749-750. doi: 10.1023/A:1006771428827

    23. [23]

      Zhu P Z, Xu J D, Sahar N, Morris M D, Kohn D H, Ramamoorthy A. Time-resolved dehydration-induced structural changes in an intact bovine cortical bone revealed by solid-state NMR spectroscopy[J]. J. Am. Chem. Soc., 2009,131(47):17064-17065. doi: 10.1021/ja9081028

    24. [24]

      Fang W C, Zhang H, Yin J W, Yang B G, Zhang Y B, Li J J, Yao F L. Hydroxyapatite crystal formation in the presence of polysaccharide[J]. Cryst. Growth. Des., 2016,16(3):1247-1255. doi: 10.1021/acs.cgd.5b01235

    25. [25]

      Zhang W J, Huang J, Wang W, Li Q, Chen Y, Feng W W, Zheng D H, Zhao T, Mao G H, Yang L Q, Wu X Y. Extraction, purification, characterization and antioxidant activities of polysaccharides from Cistanche tubulosa[J]. Int. J. Biol. Macromol., 2016,93:448-458. doi: 10.1016/j.ijbiomac.2016.08.079

    26. [26]

      Souissi N, Boughriba S, Abdelhedi O, Hamdi M, Jridi M, Li S, Nasri M. Extraction, structural characterization, and thermal and biomedical properties of sulfated polysaccharides from razor clam Solen marginatus[J]. RSC Adv., 2019,9(20):11538-11551. doi: 10.1039/C9RA00959K

    27. [27]

      El-Naggar N E A, Hussein M H, Shaaban-Dessuuki S A, Dalal S R. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth[J]. Sci. Rep., 2020,10(1)3011. doi: 10.1038/s41598-020-59945-w

    28. [28]

      Li X R, Chen S Y, Feng D M, Fu Y Q, Wu H, Lu J Z, Bao J S. Calcium-sensing receptor promotes calcium oxalate crystal adhesion and renal injury in Wistar rats by promoting ROS production and subsequent regulation of PS ectropion, OPN, KIM-1, and ERK expression[J]. Ren. Fail., 2021,43(1):465-476. doi: 10.1080/0886022X.2021.1881554

    29. [29]

      Peerapen P, Thongboonkerd V. Differential bound proteins and adhesive capabilities of calcium oxalate monohydrate crystals with various sizes[J]. Int. J. Biol. Macromol., 2020,163:2210-2223. doi: 10.1016/j.ijbiomac.2020.09.085

    30. [30]

      YANG X, JIN X X, HE W Q. Injury of renal epithelial cell and the formation of Randall's plaque in kidney stones[J]. Basic and Clinical Medicine, 2022,42(9):1454-1458.  

    31. [31]

      Ying Q, Liu G X, Zhou W J, Lan J H, Du J H, Tang X F, Xu X H. The rs13347 polymorphism of the CD44 gene is associated with the risk of kidney stones disease in the Chinese Han population of northeast Sichuan, China[J]. Comput. Math. Methods Med., 20226481260.

    32. [32]

      Wang B H, He G F, Xu G, Wen J M, Yu X. miRNA-34a inhibits cell adhesion by targeting CD44 in human renal epithelial cells: Implications for renal stone disease[J]. Urolithiasis, 2020,48:109-116. doi: 10.1007/s00240-019-01155-9

    33. [33]

      Zhang H, Sun X Y, Chen X W, Ouyang J M. Degraded Porphyra yezoensis polysaccharide protects HK-2 cells and reduces nano-COM crystal toxicity, adhesion and endocytosis[J]. J. Mater. Chem. B, 2020,8(32):7233-7252. doi: 10.1039/D0TB00360C

    34. [34]

      Lin L, Hu K B. Annexin A2 and kidney diseases[J]. Front. Cell Dev. Biol., 2022,10974381. doi: 10.3389/fcell.2022.974381

    35. [35]

      Peerapen P, Boonmark W, Thongboonkerd V. Trigonelline prevents kidney stone formation processes by inhibiting calcium oxalate crystallization, growth and crystal-cell adhesion, and downregulating crystal receptors[J]. Biomed. Pharmacother., 2022,149112876. doi: 10.1016/j.biopha.2022.112876

    36. [36]

      Francia V, Montizaan D, Salvati A. Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine[J]. Beilstein J. Nanotechnol., 2020,11(1):338-353.

    37. [37]

      Septiadi D, Crippa F, Moore T L. Nanoparticle-cell interaction: A cell mechanics perspective[J]. Adv. Mater., 2018,30(19)e1704463. doi: 10.1002/adma.201704463

    38. [38]

      Wang J Q, Yin J Y, Nie S P, Xie M Y. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective[J]. Food Res. Int., 2021,143110290. doi: 10.1016/j.foodres.2021.110290

    39. [39]

      Yu Y, Tyrikos-Ergas T, Zhu Y, Fittolani G, Bordoni V. Systematic hydrogen-bond manipulations to establish polysaccharide structure-property correlations[J]. Angew. Chem. Int. Ed., 2019,131(37):13261-13266. doi: 10.1002/ange.201906577

    40. [40]

      Ziemniak M, Zawadzka-Kazimierczuk A, Pawlędzio S, Malinska M, Sołtyka M, Trzybiński D, Pająk B. Experimental and computational studies on structure and energetic properties of halogen derivatives of 2-deoxy-D-glucose[J]. Int. J. Mol. Sci., 2021,22(7)3720. doi: 10.3390/ijms22073720

    41. [41]

      Meng Y, Lyu F Z, Xu X J, Zhang L N. Recent advances in chain conformation and bioactivities of triple-helix polysaccharides[J]. Biomacromolecules, 2020,21(5):1653-1677. doi: 10.1021/acs.biomac.9b01644

    42. [42]

      WANG X S, FANG J N. Sugar-metal complex[J]. Chem. Bull., 2004,67(12):883-890. doi: 10.3969/j.issn.0441-3776.2004.12.003

    43. [43]

      Wang W J, Shen M Y, Jiang L, Song Q Q, Liu S C, Xie M Y, Xie J H. Rheological behavior, microstructure characterization and formation mechanism of Mesona blumes polysaccharide gels induced by calcium ions[J]. Food Hydrocolloids, 2019,94:136-143. doi: 10.1016/j.foodhyd.2019.03.014

    44. [44]

      Cui Y J, Yan H D, Zhang X W. Preparation of Lentinula edodes polysaccharide‑calcium complex and its immunoactivity[J]. Biosci. Biotechnol. Biochem., 2015,79(10):1619-1623. doi: 10.1080/09168451.2015.1044930

    45. [45]

      LI H Y, YANG X H, WEI Z Z, JIA B, YANG W Z. Preparation and evaluation of carboxymethyl pullulan-calcium complex in vivo[J]. Food Sci., 2021,42(15):143-149. doi: 10.7506/spkx1002-6630-20200724-330

    46. [46]

      Pan X H, Wu S H, Yan Y J, Chen X, Guan J T, Bao Y P, Xiong X M, Liu L. Rice bran polysaccharide-metal complexes showed safe antioxidant activity in vitro[J]. Int. J. Biol. Macromol., 2019,126:934-940. doi: 10.1016/j.ijbiomac.2018.12.265

    47. [47]

      Wu J Y, Zhang Y H, Ye L, Wang C L. The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review[J]. Carbohydr. Polym., 2021,253117308. doi: 10.1016/j.carbpol.2020.117308

    48. [48]

      Liu Y T, Duan X Y, Zhang M Y, Li C, Zhang Z Q, Hu B, Liu A P, Li Q, Chen H, Tang Z Z, Wu W J, Chen D W. Extraction, structure characterization, carboxymethylation and antioxidant activity of acidic polysaccharides from Craterellus cornucopioides[J]. Ind. Crop. Prod., 2021,159113079. doi: 10.1016/j.indcrop.2020.113079

    49. [49]

      Chen X Y, Zhang L, Cheung P C K. Immunopotentiation and antitumor activity of carboxymethylated-sulfated β-(1→3)-D-glucan from Poria cocos[J]. Int. Immunopharmacol., 2010,10(4):398-405. doi: 10.1016/j.intimp.2010.01.002

    50. [50]

      Jung T S, Kim W S, Choi C K. Biomineralization of calcium oxalate for controlling crystal structure and morphology[J]. Mater. Sci. Eng. C, 2004,24(1/2):31-33.

    51. [51]

      Gomes D L, Melo K R T, Queiroz M F, Batista L, Santos P, Costa M, Lima J, Camara R, Costa L, Rocha H. In vitro studies reveal antiurolithic effect of antioxidant sulfated polysaccharides from the green seaweed Caulerpa cupressoides var flabellata[J]. Mar. Drugs, 2019,17(6)326. doi: 10.3390/md17060326

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(0)
  • Abstract views(167)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return