Citation: Yonghui ZHOU, Rujun HUANG, Dongchao YAO, Aiwei ZHANG, Yuhang SUN, Zhujun CHEN, Baisong ZHU, Youxuan ZHENG. Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373 shu

Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives

Figures(9)

  • Four nitrogen heterocyclic fluorescent materials F1 - F4 with electron donor - acceptor structures were synthesized based on quinoxaline and pyridinopyrazine derivatives, which were constructed by the condensation reaction of α-diketone with o-phenylenediamine and pyridine diamine. Their photophysical properties were studied in detail. By testing of the fluorescence lifetimes and low-temperature fluorescence/phosphorescence spectra of F1-F4, combined with density functional theory calculations, it can be concluded that all four molecules are fluorescent small materials. Compounds F1-F4 showed photoluminescence spectra with peaks at 529, 464, 568, and 507 nm, respectively, with photoluminescence quantum efficiencies (PLQYs) of up to 98.2% in toluene. Additionally, positive solvatochromism was recorded from the emission spectra of four compounds in solvents with different polarities, further confirming their intramolecular charge transfer nature. Furthermore, the lifetimes of four compounds were 12.21, 2.61, 9.76, and 6.03 ns, respectively. To further explore the functionalized applications of these fluorescent molecules, they were doped as luminescent materials in organic light- emitting diodes (DF1 - DF4). Among them, devices DF1 and DF3 achieved maximum current efficiencies of 13.38 and 11.98 cd·A-1 and maximum external quantum efficiencies of 4.8% and 4.5% with low-efficiency roll-off, which are related to the high PLQYs of molecules F1 and F3.
  • 加载中
    1. [1]

      Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51:913-915. doi: 10.1063/1.98799

    2. [2]

      Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990,347:539-541. doi: 10.1038/347539a0

    3. [3]

      Ma Y G, Zhang H Y, Shen J C, Che C M. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes[J]. Synth. Met., 1998,94:245-248. doi: 10.1016/S0379-6779(97)04166-0

    4. [4]

      Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998,395:151-154. doi: 10.1038/25954

    5. [5]

      Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S, Vardeny Z V. Formation cross-sections of singlet and triplet excitons in π-conjugated polymers[J]. Nature, 2001,409:494-497. doi: 10.1038/35054025

    6. [6]

      D'Andrade B W, Forrest S R. White organic light-emitting devices for solid-state lighting[J]. Adv. Mater., 2004,16:1585-1595. doi: 10.1002/adma.200400684

    7. [7]

      Xiao L X, Chen Z J, Qu B, Luo J X, Kong S, Gong Q H, Kido J J. Recent progresses on materials for electrophosphorescent organic light-emitting devices[J]. Adv. Mater., 2011,23:926-952. doi: 10.1002/adma.201003128

    8. [8]

      Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012,492:234-238. doi: 10.1038/nature11687

    9. [9]

      Reineke S, Thomschke M, Lüssem B, Leo K. White organic light-emitting diodes: Status and perspective[J]. Rev. Mod. Phys., 2013,85:1245-1293. doi: 10.1103/RevModPhys.85.1245

    10. [10]

      Tao Y, Yuan K, Ch en, T , Xu P, Li H H, Chen R F, Zheng C, Zhang L, Huang W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics[J]. Adv. Mater., 2014,26:7931-7958. doi: 10.1002/adma.201402532

    11. [11]

      Pan Y Y, Li W J, Zhang S T, Yao L, Gu C, Xu H, Yang B, Ma Y. High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons[J]. Adv. Opt. Mater., 2014,2:510-515. doi: 10.1002/adom.201300467

    12. [12]

      Yao L, Zhang S T, Wang R, Li W J, Shen F Z, Yang B, Ma Y G. Highly efficient near-infrared organic light-emitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative excitons[J]. Angew. Chem. Int. Ed., 2014,53:2119-2123. doi: 10.1002/anie.201308486

    13. [13]

      Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Aggregation-induced emission: Together we shine, united we soar![J]. Chem. Rev., 2015,115:11718-11721. doi: 10.1021/acs.chemrev.5b00263

    14. [14]

      Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J, Ono Y, Ikuta T. Ultrapure blue thermally activated delayed fluorescence molecules: Efficient HOMO-LUMO separation by the multiple resonance effect[J]. Adv. Mater., 2016,28:2777-2781. doi: 10.1002/adma.201505491

    15. [15]

      Yang Z Y, Mao Z, Xie Z L, Zhang Y, Liu S W, Zhao J, Xu J R, Chi Z G, Aldred M P. Recent advances in organic thermally activated delayed fluorescence materials[J]. Chem. Soc. Rev., 2017,46:915-1016. doi: 10.1039/C6CS00368K

    16. [16]

      Liang X, Yan Z P, Han H B, Wu Z G, Zheng Y X, Meng H, Zuo J L, Huang W. Peripheral amplification of multi-resonance induced thermally activated delayed fluorescence for highly efficient OLEDs[J]. Angew. Chem. Int. Ed., 2018,57:11316-11320. doi: 10.1002/anie.201806323

    17. [17]

      Jeon S K, Lee H L, Yook K, Lee J Y. Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material[J]. Adv. Mater., 2019,311803524. doi: 10.1002/adma.201803524

    18. [18]

      ZHOU Y H, KONG Q G, WANG Z M, WANG C C, ZHENG Y X. Synthesis and properties of two phosphorescence iridium complexes[J]. Chinese J. Inorg. Chem., 2014,30(10):2288-2294.  

    19. [19]

      Xu H, Chen R F, Sun Q, Lai W Y, Su Q Q, Huang W, Liu X G. Recent progress in metal-organic complexes for optoelectronic applications[J]. Chem. Soc. Rev., 2014,43:3259-3302. doi: 10.1039/C3CS60449G

    20. [20]

      Fan C, Yang C L. Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices[J]. Chem. Soc. Rev., 2014,43:6439-6469. doi: 10.1039/C4CS00110A

    21. [21]

      Yang X, Zhou G, Wong W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices[J]. Chem. Soc. Rev., 2015,44:8484-8575. doi: 10.1039/C5CS00424A

    22. [22]

      Li T Y, Wu J, Wu Z G, Zheng Y X, Zuo J L, Pan Y. Rational design of phosphorescent iridium􀃮 complexes for emission color tunability and their applications in OLEDs[J]. Coord. Chem. Rev., 2018,374:55-92. doi: 10.1016/j.ccr.2018.06.014

    23. [23]

      Kumsampao J, Chaiwai C, Sukpattanacharoen C, Chawanpunyawat T, Nalaoh P, Chasing P, Kungwan N, Sudyoadsuka T, Promarak V. Self-absorption-free excited-state intramolecular proton transfer (ESIPT) emitters for high brightness and luminous efficiency organic fluorescent electroluminescent devices[J]. Mater. Chem. Front., 2021,5:6212-6225. doi: 10.1039/D1QM00455G

    24. [24]

      Pramanik S, Deol H, Bhalla V, Kumar V. AIEE active donor-acceptor-donor-based hexaphenylbenzene probe for recognition of aliphatic and aromatic amines[J]. ACS Appl. Mater. Interfaces, 2018,10:12112-12123. doi: 10.1021/acsami.7b09791

    25. [25]

      Poddar M, Sivakumar G, Misra R. Donor-acceptor substituted 1, 8-naphthalimides: Design, synthesis, and structure-property relationship[J]. J. Mater. Chem. C, 2019,7:14798-14815. doi: 10.1039/C9TC02634G

    26. [26]

      Justin T K R, Venkateswararao A, Joseph V, Kumar S, Jou J H. Polarity tuning of fluorene derivatives by chromophores to achieve efficient blue electroluminescent materials[J]. Org. Electron., 2019,64:266-273. doi: 10.1016/j.orgel.2018.10.029

    27. [27]

      Ye S F, Wang Y X, Guo R D, Zhang Q, Lv X L, Duan Y L, Leng P P, Sun S Q, Wang L. Asymmetric anthracene derivatives as multifunctional electronic materials for constructing simplified and efficient non-doped homogeneous deep blue fluorescent OLEDs[J]. Chem. Eng. J., 2020,393124694. doi: 10.1016/j.cej.2020.124694

    28. [28]

      Zhang T, Ye J Y, Luo A S, Liu D. Efficient deep blue emitter based on carbazole-pyrene hybrid for non-doped electroluminescent device[J]. Opt. Mater., 2020,100109632. doi: 10.1016/j.optmat.2019.109632

    29. [29]

      Yu Y, Cang M, Cui W, Xu L, Wang R Z, Sun M Z, Zhou H Y, Yang W J, Xue S F. Efficient red fluorescent OLEDs based on aggregation-induced emission combined with hybridized local and charge transfer state[J]. Dyes Pigment., 2021,184108770. doi: 10.1016/j.dyepig.2020.108770

    30. [30]

      Xu J W, Liu H, Li J S, Zhao Z J, Tang B Z. Multifunctional bipolar materials serving as emitters for efficient deep-blue fluorescent OLEDs and as hosts for phosphorescent and white OLEDs[J]. Adv. Opt. Mater., 2021,92001840. doi: 10.1002/adom.202001840

    31. [31]

      Tang X Y, Liu H, Liu F T, He X, Xu X H, Chen J W, Peng Q M, Lu P. Efficient red electroluminescence from phenanthro[9,10-d]imidazole-naphtho[2,3-c][1,2,5]thiadiazole donor-acceptor derivatives[J]. Chem.-Asian J., 2021,16:1942-1948. doi: 10.1002/asia.202100391

    32. [32]

      Wang Z Q, Yang T T, Dong S F, Wen Z J, Xu H X, Miao Y Q, Wang H, Yu SJ. Anthracene and carbazole based asymmetric fluorescent materials for high-efficiency deep-blue non-doped organic light emitting devices with CIEy=0.06[J]. Dyes Pigment., 2022,199110047. doi: 10.1016/j.dyepig.2021.110047

    33. [33]

      Ning S Y, Zhang Y F, Li Y X, Wu Y, Qin K, Wang D D, Wang X Y, Wu C M, Ma H L. Benzene[g]furan[2,3-B]quinoxaline-based red fluorescent material for non-doped organic light-emitting devices with low efficiency roll-off[J]. Chem. Phys. Lett., 2022,787139199. doi: 10.1016/j.cplett.2021.139199

  • 加载中
    1. [1]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    2. [2]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    3. [3]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    12. [12]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    19. [19]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(4)
  • Abstract views(362)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return