Research progress on photothermal materials and their application in solar desalination
- Corresponding author: Zhengying WU, zywu@mail.usts.edu.cn Linbing SUN, lbsun@njtech.edu.cn
Citation: Xinxin JING, Weiduo WANG, Hesu MO, Peng TAN, Zhigang CHEN, Zhengying WU, Linbing SUN. Research progress on photothermal materials and their application in solar desalination[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
Hua M, Zhang L, Fan L W, Lv Y, Lu H, Yu Z T, Cen K F. Experimental investigation of effect of heat load on thermal performance of natural circulation steam generation system as applied to PTC-based solar system[J]. Energy Conv. Manage., 2015,91:101-109. doi: 10.1016/j.enconman.2014.11.056
Haddeland I, Heinke J, Biemans H, Eisner S, Florke M, Hanasaki N, Konzmann M, Ludwig F, Masaki Y, Schewe J, Stacke T, Tessler Z D, Wada Y, Wisser D. Global water resources affected by human interventions and climate change[J]. Proc. Natl. Acad. Sci. U. S. A., 2014,111(9):3251-3256. doi: 10.1073/pnas.1222475110
Anis S F, Hashaikeh R, Hilal N. Functional materials in desalination: A review[J]. Desalination, 2019,468114077. doi: 10.1016/j.desal.2019.114077
Sharon H, Reddy K S. A review of solar energy driven desalination technologies[J]. Renew. Sust. Energ. Rev., 2015,41:1080-1118. doi: 10.1016/j.rser.2014.09.002
Ahmed F E, Hashaikeh R, Hilal N. Solar powered desalination-Technology, energy and future outlook[J]. Desalination, 2019,453:54-76. doi: 10.1016/j.desal.2018.12.002
Chen C J, Kuang Y D, Hu L B. Challenges and opportunities for solar evaporation[J]. Joule, 2019,3(3):683-718. doi: 10.1016/j.joule.2018.12.023
Neumann O, Urban A S, Day J, Lal S, Nordlander P, Halas N J. Solar vapor generation enabled by nanoparticles[J]. ACS Nano, 2013,7(1):42-49. doi: 10.1021/nn304948h
LIU J, PAN R R, ZHANG E H, LI Y M, LIU J J, XU M, RONG H P, CHEN W X, ZHANG J T. Mechanistic understanding of plasmon-induced hot electron injection for photocatalytic and photoelectrochemical solar-to-fuel generation[J]. Chinese Journal of Applied Chemistry, 2018,35(8):890-901.
Mateo D, Cerrillo J L, Durini S, Gascon J. Fundamentals and applications of photo-thermal catalysis[J]. Chem. Soc. Rev., 2022,51(4)1547. doi: 10.1039/D2CS90010F
Zhu L L, Gao M M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Mater. Horizons, 2018,5(3):323-343. doi: 10.1039/C7MH01064H
Liu F H, Lai Y J, Zhao B Y, Bradley R, Wu W P. Photothermal materials for efficient solar powered steam generation[J]. Front. Chem. Sci. Eng., 2019,13(4):636-653. doi: 10.1007/s11705-019-1824-1
Wang P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight[J]. Environ. Sci.: Nano, 2018,5(5):1078-1089. doi: 10.1039/C8EN00156A
Liu G H, Xu J L, Wang K Y. Solar water evaporation by black photothermal sheets[J]. Nano Energy, 2017,41:269-284. doi: 10.1016/j.nanoen.2017.09.005
Wang J, Li Y Y, Deng L, Wei N, Weng Y K, Dong S, Qi D P, Qiu J, Chen X D, Wu T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Adv. Mater., 2017,29(3)1603730. doi: 10.1002/adma.201603730
Kim J U, Kang S J, Lee S, Ok J, Kim Y, Roh S H, Hong H, Kim J K, Chae H, Kwon S J, Kim T I. Omnidirectional, broadband light absorption in a hierarchical nanoturf membrane for an advanced solar-vapor generator[J]. Adv. Funct. Mater., 2020,30(50)2003862. doi: 10.1002/adfm.202003862
Fang J, Liu Q L, Zhang W, Gu J J, Su Y S, Su H L, Guo C P, Zhang D. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation[J]. J. Mater. Chem. A, 2017,5(34):17817-17821. doi: 10.1039/C7TA05976K
Wu J K, Tan P, Lu J, Jiang Y, Liu X Q, Sun L B. Fabrication of photothermal silver nanocube/ZIF-8 composites for visible-light-regulated release of propylene[J]. ACS Appl. Mater. Interfaces, 2019,11(32):29298-29304. doi: 10.1021/acsami.9b09629
Sun Z, Wang J J, Wu Q L, Wang Z Y, Wang Z, Sun J, Liu C J. Plasmon based double-layer hydrogel device for a highly oefficient solar vapor generation[J]. Adv. Funct. Mater., 2019,29(29)1901312. doi: 10.1002/adfm.201901312
Zhu M W, Li Y J, Chen F J, Zhu X Y, Dai J Q, Li Y F, Yang Z, Yan X J, Song J W, Wang Y B, Hitz E, Luo W, Lu M H, Yang B, Hu L B. Plasmonic wood for high-efficiency solar steam generation[J]. Adv. Energy Mater., 2018,8(4)1701028. doi: 10.1002/aenm.201701028
Sanz J M, Ortiz D, Alcaraz de la Osa R, Saiz J M, González F, Brown A S, Losurdo M, Everitt H O, Moreno F. UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: Geometry and substrate effects[J]. J. Phys. Chem. C, 2013,117(38):19606-19615. doi: 10.1021/jp405773p
Zhou L, Tan Y L, Wang J Y, Xu W C, Yuan Y, Cai W S, Zhu S N, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nat. Photonics, 2016,10(6):393-398. doi: 10.1038/nphoton.2016.75
Lin Y W, Chen Z H, Fang L, Meng M, Liu Z F, Di Y S, Cai W D, Huang S S, Gan Z X. Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation[J]. Nanotechnology, 2019,30(1)015402. doi: 10.1088/1361-6528/aae678
Zhang L L, Xing J, Wen X L, Chai J W, Wang S J, Xiong Q H. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination[J]. Nanoscale, 2017,9(35):12843-12849. doi: 10.1039/C7NR05149B
Gao M M, Peh C K, Phan H T, Zhu L L, Ho G W. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation[J]. Adv. Energy Mater., 2018,8(25)1800711. doi: 10.1002/aenm.201800711
Goel S, Chen F, Cai W B. Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics[J]. Small, 2014,10(4):631-645. doi: 10.1002/smll.201301174
Wu X, Robson M E, Phelps J L, Tan J S, Shao B, Owens G, Xu H L. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation[J]. Nano Energy, 2019,56:708-715. doi: 10.1016/j.nanoen.2018.12.008
Chen C J, Liu H Y, Wang H T, Zhao Y W, Li M. A scalable broadband plasmonic cuprous telluride nanowire-based hybrid photothermal membrane for efficient solar vapor generation[J]. Nano Energy, 2021,84105868. doi: 10.1016/j.nanoen.2021.105868
Guo Z Z, Wang G, Ming X, Mei T, Wang J Y, Li J H, Qian J W, Wang X B. PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization[J]. ACS Appl. Mater. Interfaces, 2018,10(29):24583-24589. doi: 10.1021/acsami.8b08019
Liu H W, Chen C J, Wen H, Guo R X, Williams N A, Wang B D, Chen F J, Hu L B. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification[J]. J. Mater. Chem. A, 2018,6(39):18839-18846. doi: 10.1039/C8TA05924A
Mu C H, Song Y Q, Deng K, Lin S, Bi Y T, Scarpa F, Crouse D. High solar desalination efficiency achieved with 3D Cu2ZnSnS4 nanosheet-assembled membranes[J]. Adv. Sustain. Syst., 2017,1(10)1700064. doi: 10.1002/adsu.201700064
Shi Y, Li R Y, Jin Y, Zhuo S F, Shi L, Chang J, Hong S, Ng K C, Wang P. A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018,2(6):1171-1186. doi: 10.1016/j.joule.2018.03.013
Shi Y, Li R Y, Shi L, Ahmed E, Jin Y, Wang P. A Robust CuCr2O4/SiO2 Composite photothermal material with underwater black property and extremely high thermal stability for solar-driven water evaporation[J]. Adv. Sustain. Syst., 2018,2(3)1700145. doi: 10.1002/adsu.201700145
Ye M M, Jia J, Wu Z J, Qian C X, Chen R, O'Brien P G, Sun W, Dong Y C, Ozin G A. Synthesis of black TiOxnanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation[J]. Adv. Energy Mater., 2017,7(4)1601811. doi: 10.1002/aenm.201601811
Liu X H, Cheng H Y, Guo Z Z, Zhan Q, Qian J W, Wang X B. Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation[J]. ACS Appl. Mater. Interfaces, 2018,10(46):39661-39669. doi: 10.1021/acsami.8b13374
Lu Q C, Yang Y, Feng J R, Wang X. Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation[J]. Solar RRL, 2019,3(2)1800277. doi: 10.1002/solr.201800277
Liu Y C, Wang X Q, Wu H. High-performance wastewater treatment based on reusable functional photo-absorbers[J]. Chem. Eng. J., 2017,309:787-794. doi: 10.1016/j.cej.2016.10.033
Li D S, Han D T, Guo C W, Huang C L. Facile preparation of MnO2-deposited wood for high-efficiency solar steam generation[J]. ACS Appl. Energy Mater., 2021,4(2):1752-1762. doi: 10.1021/acsaem.0c02902
Li R Y, Zhang L B, Shi L, Wang P. MXene Ti3C2: An effective 2D light-to-heat conversion material[J]. ACS Nano, 2017,11(4):3752-3759. doi: 10.1021/acsnano.6b08415
Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Lett., 2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339
Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification[J]. ACS Appl. Mater. Interfaces, 2019,11(40):36589-36597. doi: 10.1021/acsami.9b10606
Zhu L, Sun L, Zhang H, Yu D F, Aslan H, Zhao J G, Li Z L, Yu M, Besenbacher F, Sun Y. Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination[J]. Nano Energy, 2019,57:842-850. doi: 10.1016/j.nanoen.2018.12.058
Kaur M, Ishii S, Shinde S L, Nagao T. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride[J]. Adv. Sustain. Syst., 2018,3(2)1800112.
Xu Y, Li C, Wu X Y, Li M X, Ma Y S, Yang H, Zeng Q D, Sessler J L, Wang Z X. Sheet-like 2D manganese(Ⅳ) complex with high photothermal conversion efficiency[J]. J. Am. Chem. Soc., 2022,144(41):18834-18843. doi: 10.1021/jacs.2c04734
Ren H Y, Tang M, Guan B L, Wang K X, Yang J W, Wang F F, Wang M Z, Shan J Y, Chen Z L, Wei D, Peng H L, Liu Z F. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Adv. Mater., 2017,29(38)1702590. doi: 10.1002/adma.201702590
Zhang P P, Li J, Lv L X, Zhao Y, Qu L T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano, 2017,11(5):5087-5093. doi: 10.1021/acsnano.7b01965
Li X Q, Xu W C, Tang M Y, Zhou L, Zhu B, Zhu S N, Zhu J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proc. Natl. Acad. Sci. U. S. A., 2016,113(49):13953-13958. doi: 10.1073/pnas.1613031113
Liu X, Wang X Z, Huang J, Cheng G, He Y R. Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid[J]. Appl. Energy, 2018,220:302-312. doi: 10.1016/j.apenergy.2018.03.097
Yin Z, Wang H, Jian M, Li Y, Xia K, Zhang M, Wang C, Wang Q, Ma M, Zheng Q S, Zhang Y. Extremely black vertically aligned carbon nanotube arrays for solar steam generation[J]. ACS Appl. Mater. Interfaces, 2017,9(34):28596-28603. doi: 10.1021/acsami.7b08619
Xue G B, Liu K, Chen Q, Yang P H, Li J, Ding T P, Duan J J, Qi B, Zhou J. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Appl. Mater. Interfaces, 2017,9(17):15052-15057. doi: 10.1021/acsami.7b01992
Xu N, Hu X Z, Xu W C, Li X Q, Zhou L, Zhu S N, Zhu J. Mushrooms as efficient solar steam-generation devices[J]. Adv. Mater., 2017,29(28)1606762. doi: 10.1002/adma.201606762
Bian Y, Du Q Q, Tang K, Shen Y, Hao L C, Zhou D, Wang X K, Xu Z H, Zhang H L, Zhao L J, Zhu S M, Ye J D, Lu H, Yang Y, Zhang R, Zheng Y D, Gu S L. Carbonized bamboos as excellent 3D solar vapor-generation devices[J]. Adv. Mater. Technol., 2018,4(4)1800593.
Li C W, Jiang D G, Huo B B, Ding M C, Huang C C, Jia D D, Li H X, Liu C Y, Liu J Q. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination[J]. Nano Energy, 2019,60:841-849. doi: 10.1016/j.nanoen.2019.03.087
Ni F, Xiao P, Zhang C, Liang Y, Gu J C, Zhang L, Chen T. Micro-/macroscopically synergetic control of switchable 2D/3D photothermal water purification enabled by robust, portable, and cost-effective cellulose papers[J]. ACS Appl. Mater. Interfaces, 2019,11(17):15498-15506. doi: 10.1021/acsami.9b00380
Xiao P, Gu J C, Zhang C, Ni F, Liang Y, He J, Zhang L, Ouyang J Y, Kuo S W, Chen T. A scalable, low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction[J]. Nano Energy, 2019,65104002. doi: 10.1016/j.nanoen.2019.104002
Liu Z X, Wu B H, Zhu B, Chen Z G, Zhu M F, Liu X G. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight[J]. Adv. Funct. Mater., 2019,29(43)1905485. doi: 10.1002/adfm.201905485
Ding R H, Meng Y S, Qiao Y Q, Wu M H, Ma H J, Zhang B W. Functionalizing cotton fabric via covalently grafting polyaniline for solar-driven interfacial evaporation of brine[J]. Appl. Surf. Sci., 2022,598153665. doi: 10.1016/j.apsusc.2022.153665
Xu X, Ozden S, Bizmark N, Arnold C B, Datta S S, Priestley R D. A bioinspired elastic hydrogel for solar-driven water purification[J]. Adv. Mater., 2021,33(18)e2007833. doi: 10.1002/adma.202007833
Yang Y Y, Yang L, Yang F Y, Bai W J, Zhang X Q, Li H T, Duan G G, Xu Y T, Li Y W. A bioinspired antibacterial and photothermal membrane for stable and durable clean water remediation[J]. Mater. Horizons, 2023,10(1):268-276. doi: 10.1039/D2MH01151D
Zhang X, Zhao S J, Wen B Y, Su Z Q. Sugarcane inspired polydopamine@attapulgite-based aerogels with vertical pore structure for solar-driven steam generation[J]. Sep. Purif. Technol., 2023,321124188. doi: 10.1016/j.seppur.2023.124188
Xie Z J, Zhu J T, Zhang L B. Three-dimensionally structured polypyrrole-coated setaria viridis spike composites for efficient solar steam generation[J]. ACS Appl. Mater. Interfaces, 2021,13(7):9027-9035. doi: 10.1021/acsami.0c22917
Gao C, Li Y M, Lan L Z, Wang Q, Zhou B G, Chen Y, Li J C, Guo J S, Mao J F. Bioinspired asymmetric polypyrrole membranes with enhanced photothermal conversion for highly efficient solar evaporation[J]. Adv. Sci., 20232306833.
Zhao X T, Dong J J, Yu X H, Liu L L, Liu J L, Pan J F. Bioinspired photothermal polyaniline composite polyurethane sponge: Interlayer engineering for high-concentration seawater desalination[J]. Sep. Purif. Technol., 2023,311123181. doi: 10.1016/j.seppur.2023.123181
Han J, Xing W Q, Yan J, Wen J, Liu Y T, Wang Y Q, Wu Z F, Tang L C, Gao J F. Stretchable and super hydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination[J]. Adv. Fiber Mater., 2022,4(5):1233-1245. doi: 10.1007/s42765-022-00172-5
Shu L, Zhang X F, Wang Z G, Liu J, Yao J F. Cellulose-based bi-layer hydrogel evaporator with a low evaporation enthalpy for efficient solar desalination[J]. Carbohydr. Polym., 2024,327121695. doi: 10.1016/j.carbpol.2023.121695
Zhang Y, Yin X Y, Yu B, Wang X L, Guo Q Q, Yang J. Recyclable polydopamine-functionalized sponge for high-efficiency clean water generation with dual-purpose solar evaporation and contaminant adsorption[J]. ACS Appl. Mater. Interfaces, 2019,11(35):32559-32568. doi: 10.1021/acsami.9b10076
Chong W M, Meng R R, Liu Z X, Liu Q Y, Hu J J, Zhu B, Macharia D K, Chen Z G, Zhang L S. Superhydrophilic polydopamine-modified carbon-fber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator[J]. Adv. Fiber Mater., 2023,5(3):1063-1075. doi: 10.1007/s42765-023-00276-6
Yi L C, Ci S Q, Luo S L, Shao P, Hou Y, Wen Z H. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination[J]. Nano Energy, 2017,41:600-608. doi: 10.1016/j.nanoen.2017.09.042
Wang L L, Wang M, Xu Z P, Yu W, Xie H Q. Well oil dispersed Au/oxygen-deficient TiO2 nanofluids towards full spectrum solar thermal conversion[J]. Sol. Energy Mater. Sol. Cells, 2020,212110575. doi: 10.1016/j.solmat.2020.110575
Wang Z G, Xu W Q, Yu K, Gong S J, Mao H B, Huang R, Zhu Z Q. NiS2 nanocubes coated Ti3C2 nanosheets with enhanced light-to-heat conversion for fast and efficient solar seawater steam generation[J]. Solar RRL, 2021,5(7)2100183. doi: 10.1002/solr.202100183
Lin Z X, Wu T T, Feng Y F, Shi J, Zhou B, Zhu C H, Wang Y Y, Liang R L, Mizuno M. Poly (N-phenylglycine)/MoS2 nanohybrid with synergistic solar-thermal conversion for efficient water purification and thermoelectric power generation[J]. ACS Appl. Mater. Interfaces, 2022,14(1):1034-1044. doi: 10.1021/acsami.1c20393
Yang Y B, Yang X D, Fu L N, Zou M C, Cao A Y, Du Y P, Yuan Q, Yan C H. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination[J]. ACS Energy Lett., 2018,3(5):1165-1171. doi: 10.1021/acsenergylett.8b00433
Ren L T, Yi X L, Yang Z S, Wang D F, Liu L Q, Ye J H. Designing carbonized loofah sponge architectures with plasmonic Cu nanoparticles encapsulated in graphitic layers for highly efficient solar vapor generation[J]. Nano Lett., 2021,21(4):1709-1715. doi: 10.1021/acs.nanolett.0c04511
Tian H X, Yu M H, Liu X, Qian J C, Qian W, Chen Z G, Wu Z Y. Plant-cell oriented few-layer MoS2/C as high performance anodes for lithium-ion batteries[J]. Electrochim. Acta, 2022,424140685. doi: 10.1016/j.electacta.2022.140685
Zhang X F, Wu G, Yang X C. MoS2 Nanosheet-carbon foam composites for solar steam generation[J]. ACS Appl. Nano Mater., 2020,3(10):9706-9714. doi: 10.1021/acsanm.0c01712
Wang S, Deng H, Chang H Y, Li Y Y, Hui H H, Dong Z F, Pu P. Co-hydrothermal carbonization of cotton stalks and MnO2 for direct solar steam generation with high efficiency[J]. Solar RRL, 2021,6(2)2100890.
Lin Y, Tian H, Qian J, Yu M, Hu T, Lassi U, Chen Z, Wu Z. Biocarbon-directed vertical δ-MnO2 nanoflakes for boosting lithium-ion diffusion kinetics[J]. Mater. Today Chem., 2022,26101023. doi: 10.1016/j.mtchem.2022.101023
Xi S B, Wang M, Wang L L, Xie H Q, Yu W. 3D reduced graphene oxide aerogel supported TiO2-x for shape-stable phase change composites with high photothermal efficiency and thermal conductivity[J]. Sol. Energy Mater. Sol. Cells, 2021,226111068. doi: 10.1016/j.solmat.2021.111068
Wang Y C, Wang C Z, Song X J, Megarajan S K, Jiang H Q. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation[J]. J. Mater. Chem. A, 2018,6(3):963-971. doi: 10.1039/C7TA08972D
Hu X Z, Xu W C, Zhou L, Tan Y L, Wang Y, Zhu S N, Zhu J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Adv. Mater., 2017,29(5)1604031. doi: 10.1002/adma.201604031
DANG Y X, TAN P, LIU X Q, SUN L B. Temperature swing for CO2 capture driven by radiative cooling and solar heating[J]. CIESC Journal, 2023,74(1):469-478.
Wang G, Fu Y, Guo A K, Mei T, Wang J Y, Li J H, Wang X B. Reduced graphene oxide-polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation[J]. Chem. Mater., 2017,29(13):5629-5635. doi: 10.1021/acs.chemmater.7b01280
Liu F, Liang W D, Wang C J, Xiao C H, He J X, Zhao G H, Zhu Z Q, Sun H X, Li A. Superhydrophilic and mechanically robust phenolic resin as double layered photothermal materials for efficient solar steam generation[J]. Mater. Today Energy, 2020,16100375. doi: 10.1016/j.mtener.2019.100375
Ni F, Xiao P, Qiu N X, Zhang C, Liang Y, Gu J C, Xia J Y, Zeng Z X, Wang L P, Xue Q J, Chen T. Collective behaviors mediated multifunctional black sand aggregate towards environmentally adaptive solar-to-thermal purified water harvesting[J]. Nano Energy, 2020,68104311. doi: 10.1016/j.nanoen.2019.104311
Zhao F, Zhou X Y, Shi Y, Qian X, Alexander M, Zhao X P, Mendez S, Yang R G, Qu L T, Yu G H. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nat. Nanotechnol., 2018,13(6):489-495. doi: 10.1038/s41565-018-0097-z
Fan X Q, Yang Y, Shi X L, Liu Y, Li H P, Liang J J, Chen Y S. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance[J]. Adv. Funct. Mater., 2020,30(52)2007110. doi: 10.1002/adfm.202007110
Li L Y, Liu Y X, Hao P L, Wang Z G, Fu L M, Ma Z F, Zhou J. PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR Ⅰ and Ⅱ window[J]. Biomaterials, 2015,41:132-140. doi: 10.1016/j.biomaterials.2014.10.075
Tao F J, Green M, Garcia A V, Xiao T, Van Tran A T, Zhang Y L, Yin Y S, Chen X B. Recent progress of nanostructured interfacial solar vapor generators[J]. Appl. Mater. Today, 2019,17:45-84. doi: 10.1016/j.apmt.2019.07.011
Zhu D H, Cai L, Sun Z Y, Zhang A, Heroux P, Kim H, Yu W, Liu Y N. Efficient degradation of tetracycline by rGO@black titanium dioxide nanofluid via enhanced catalysis and photothermal conversion[J]. Sci. Total. Environ., 2021,787147536. doi: 10.1016/j.scitotenv.2021.147536
Gong L, Sun J, Zheng P, Lin F, Yang G C, Liu Y S. Two birds one stone: facile and controllable synthesis of the Ag quantum dots/reduced graphene oxide composite with significantly improved solar evaporation efficiency and bactericidal performance[J]. ACS Appl. Mater. Interfaces, 2021,13(15):17649-17657. doi: 10.1021/acsami.1c02480
Sun L, Li Z, Su R, Wang Y L, Li Z, Du B S, Sun Y, Guan P F, Besenbacher F, Yu M. Phase-transition induced conversion into a photothermal material: Quasi-metallic WO2.9 nanorods for solar water evaporation and anticancer photothermal therapy[J]. Angew. Chem. Int. Ed., 2018,57(33):10666-10671. doi: 10.1002/anie.201806611
Zhao X, Meng X T, Zou H Q, Wang Z H, Du Y D, Shao Y, Qi J, Qiu J S. Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation[J]. Adv. Funct. Mater., 2022,33(7)2209207.
Zhou L, Tan Y L, Ji D X, Zhu B, Zhang P, Xu J, Gan Q Q, Yu Z F, Zhu J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Sci. Adv., 2016,2(4)e1501227. doi: 10.1126/sciadv.1501227
Zhang X, Chang Q, Li N, Xue C R, Zhang H N, Yang J L, Hu S L. Hierarchical pore-gradient silica aerogel balancing heat and water management for efficient solar-driven water evaporation[J]. Adv. Sustain. Syst., 2022,6(6)2200079. doi: 10.1002/adsu.202200079
Chen Y L, Zhao G M, Ren L P, Yang H J, Xiao X F, Xu W L. Blackbody-inspired array structural polypyrrole-sunflower disc with extremely high light absorption for efficient photothermal evaporation[J]. ACS Appl. Mater. Interfaces, 2020,12(41):46653-46660. doi: 10.1021/acsami.0c11549
Chen T J, Xie H, Qiao X, Hao S Q, Wu Z Z, Sun D, Liu Z Y, Cao F, Wu B H, Fang X L. Highly anisotropic corncob as an efficient solar steam-generation device with heat localization and rapid water transportation[J]. ACS Appl. Mater. Interfaces, 2020,12(45):50397-50405. doi: 10.1021/acsami.0c13845
Geng Y, Sun W, Ying P J, Zheng Y J, Ding J, Sun K, Li L, Li M. Bioinspired fractal design of waste biomass-derived solar-thermal materials for highly efficient solar evaporation[J]. Adv. Funct. Mater., 2020,31(3)2007648.
Gao T T, Li Y J, Chen C J, Yang Z, Kuang Y D, Jia C, Song J W, Hitz E M, Liu B Y, Huang H, Yu J Y, Yang B, Hu L B. Architecting a floatable, durable, and scalable steam generator: Hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement[J]. Small Methods, 2019,3(2)1800176. doi: 10.1002/smtd.201800176
Li Q W, Zhao X, Li L X, Hu T, Yang Y F, Zhang J P. Facile preparation of polydimethylsiloxane/carbon nanotubes modified melamine solar evaporators for efficient steam generation and desalination[J]. J. Colloid Interface Sci., 2021,584:602-609. doi: 10.1016/j.jcis.2020.10.002
Meng T T, Li Z T, Wan Z M, Zhang J, Wang L Z, Shi K J, Bu X T, Alshehri S M, Bando Y, Yamauchi Y, Li D G, Xu X T. MOF-derived nanoarchitectured carbons in wood sponge enable solar-driven pumping for high-efficiency soil water extraction[J]. Chem. Eng. J., 2023,452139193. doi: 10.1016/j.cej.2022.139193
Zhu L, Sun L, Zhang H, Aslan H, Sun Y, Huang Y D, Rosei F, Yu M. A solution to break the salt barrier for high-rate sustainable solar desalination[J]. Energy Environ. Sci., 2021,14(4):2451-2459. doi: 10.1039/D1EE00113B
Chen S, Sun Z Y, Xiang W L, Shen C Y, Wang Z Y, Jia X Y, Sun J, Liu C J. Plasmonic wooden flower for highly efficient solar vapor generation[J]. Nano Energy, 2020,76104998. doi: 10.1016/j.nanoen.2020.104998
Liu C K, Peng Y, Zhao X Z. Flower-inspired bionic sodium alginate hydrogel evaporator enhancing solar desalination performance[J]. Carbohydr. Polym., 2021,273118536. doi: 10.1016/j.carbpol.2021.118536
Zou M M, Zhang Y, Cai Z R, Li C X, Sun Z Y, Yu C L, Dong Z C, Wu L, Song Y L. 3D printing a biomimetic bridge-arch solar evaporator for eliminating salt accumulation with desalination and agricultural applications[J]. Adv. Mater., 2021,33(34)e2102443. doi: 10.1002/adma.202102443
Li N, Qiao L F, He J T, Wang S X, Yu L M, Murto P, Li X Y, Xu X F. Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design[J]. Adv. Funct. Mater., 2020,31(7)24664.
Zhou X Y, Zhao F, Guo Y H, Zhang Y, Yu G H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy Environ. Sci., 2018,11(8):1985-1992. doi: 10.1039/C8EE00567B
Guo Y H, Lu H Y, Zhao F, Zhou X Y, Shi W, Yu G H. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Adv. Mater., 2020,32(11)e1907061. doi: 10.1002/adma.201907061
Jia C, Li Y J, Yang Z, Chen G, Yao Y G, Jiang F, Kuang Y D, Pastel G, Xie H, Yang B, Das S, Hu L B. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule, 2017,1(3):588-599. doi: 10.1016/j.joule.2017.09.011
Fang J, Liu J, Gu J J, Liu Q L, Zhang W, Su H L, Zhang D. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation[J]. Chem. Mater., 2018,30(18):6217-6221. doi: 10.1021/acs.chemmater.8b01702
Li J L, Wang X Y, Lin Z H, Xu N, Li X Q, Liang J, Zhao W, Lin R X, Zhu B, Liu G L, Zhou L, Zhu S N, Zhu J. Over 10 kg·m-2·h-1 evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 2020,4(4):928-937. doi: 10.1016/j.joule.2020.02.014
Mohseni Ahangar A, Hedayati M A, Maleki M, Ghanbari H, Valanezhad A, Watanabe I. A hydrophilic carbon foam/molybdenum disulfide composite as a self-floating solar evaporator[J]. RSC Adv., 2023,13(3):2181-2189. doi: 10.1039/D2RA07810D
Bai H Y, Liu N, Hao L, He P P, Ma C D, Niu R, Gong J, Tang T. Self-floating efficient solar steam generators constructed using super-hydrophilic N, O dual-doped carbon foams from waste polyester[J]. Energy Environ. Mater., 2022,5(4):1204-1213. doi: 10.1002/eem2.12235
Bai H Y, He P P, Hao L, Liu N, Fan Z F, Chen B Y, Niu R, Gong J. Engineering self-floating Fe2O3/N, O-doped carbon foam as a bifunctional interfacial solar evaporator for synergetic freshwater production and advanced oxidation process[J]. J. Environ. Chem. Eng., 2022,10(5)108338. doi: 10.1016/j.jece.2022.108338
Jiang J, Jiang H L, Xu Y, Ai L H. 1T/2H MoS2 nanoflowers embedded in porous PDMS sponge with high salt-resistance for efficient and durable solar desalination[J]. Desalination, 2022,539115943. doi: 10.1016/j.desal.2022.115943
Wang Q M, Jia F F, Huang A H, Qin Y, Song S X, Li Y M, Arroyo M A C. MoS2@sponge with double layer structure for high-efficiency solar desalination[J]. Desalination, 2020,481114359. doi: 10.1016/j.desal.2020.114359
Guo P, Zhang S Y, Jin R Y, Teng Z Y, Heng L P, Wang B, Jiang L. A super absorbent resin-based solar evaporator for high-efficient various water treatment[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2022,648129405. doi: 10.1016/j.colsurfa.2022.129405
Gao Y, Sun Q M, Chen Y, Zhou X H, Wei C Y, Lyu L H. A highly efficient bio-inspired 3D solar-driven evaporator with advanced heat management and salt fouling resistance design[J]. Chem. Eng. J., 2023,455140500. doi: 10.1016/j.cej.2022.140500
Bu Y M, Zhou Y H, Lei W W, Ren L P, Xiao J F, Yang H J, Xu W L, Li J L. A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation[J]. J. Mater. Chem. A, 2022,10(6):2856-2866. doi: 10.1039/D1TA09288J
Xia W T, Cheng H Y, Zhou S Q, Yu N N, Hu H. Synergy of copper selenide/MXenes composite with enhanced solar-driven water evaporation and seawater desalination[J]. J. Colloid Interface Sci., 2022,625:289-296. doi: 10.1016/j.jcis.2022.06.028
Wang Z X, Gao J, Zhou J J, Gong J W, Shang L W, Ye H B, He F, Peng S Q, Lin Z X, Li Y X, Caruso F. Engineering metal-phenolic networks for solar desalination with directional salt crystallization[J]. Adv. Mater., 2023,35(1)e2209015. doi: 10.1002/adma.202209015
Wu L, Dong Z C, Cai Z R, Ganapathy T, Fang N X, Li C X, Yu C L, Zhang Y L, Song Y L. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nat. Commun., 2020,11(1)521. doi: 10.1038/s41467-020-14366-1
Gao C, Zhu J J, Li J C, Zhou B G, Liu X J, Chen Y, Zhang Z, Guo J S. Honeycomb-structured fabric with enhanced photothermal management and site-specific salt crystallization enables sustainable solar steam generation[J]. J. Colloid Interface Sci., 2022,619:322-330. doi: 10.1016/j.jcis.2022.03.122
Xu N, Zhang H R, Lin Z H, Li J L, Liu G L, Li X Q, Zhao W, Min X Z, Yao P C, Zhou L, Song Y, Zhu B, Zhu S N, Zhu J. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation[J]. Natl. Sci. Rev., 2021,8(10)nwab065. doi: 10.1093/nsr/nwab065
Xia Y, Hou Q F, Jubaer H, Li Y, Kang Y, Yuan S, Liu H Y, Woo M W, Zhang L, Gao L, Wang H T, Zhang X W. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J]. Energy Environ. Sci., 2019,12(6):1840-1847. doi: 10.1039/C9EE00692C
Kuang Y D, Chen C J, He S M, Hitz E M, Wang Y L, Gan W T, Mi R Y, Hu L B. A High-performance self-regenerating solar evaporator for continuous water desalination[J]. Adv. Mater., 2019,31(23)e1900498. doi: 10.1002/adma.201900498
Ni G, Zandavi S H, Javid S M, Boriskina S V, Cooper T A, Chen G. A salt-rejecting floating solar still for low-cost desalination[J]. Energy Environ. Sci., 2018,11(6):1510-1519. doi: 10.1039/C8EE00220G
Dang Y X, Tan P, Hu B, Gu C, Liu X Q, Sun L B. Low-energy-consumption temperature swing system for CO2 capture by combining passive radiative cooling and solar heating[J]. Green Energy Environ., 2024,9(3):507-515. doi: 10.1016/j.gee.2022.08.004
Zhou H, Wang H X, Niu H T, Gestos A, Lin T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles[J]. Adv. Funct. Mater., 2012,23(13):1664-1670.
Li H N, Yang J, Xu Z K. Asymmetric surface engineering for Janus membranes[J]. Adv. Mater. Interfaces, 2020,7(7)1902064. doi: 10.1002/admi.201902064
Zhao J Q, Yang Y W, Yang C H, Tian Y P, Han Y, Liu J, Yin X T, Que W X. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination[J]. J. Mater. Chem. A, 2018,6(33):16196-16204. doi: 10.1039/C8TA05569F
Tian Y K, Li Y J, Zhang X Y, Jia J, Yang X, Yang S K, Yu J Y, Wu D Q, Wang X L, Gao T T, Li F X. Breath-figure self-assembled low-cost Janus fabrics for highly efficient and stable solar desalination[J]. Adv. Funct. Mater., 2022,32(33)2113258. doi: 10.1002/adfm.202113258
Xu W C, Hu X Z, Zhuang S D, Wang Y X, Li X Q, Zhou L, Zhu S N, Zhu J. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Adv. Energy Mater., 2018,8(14)1702884. doi: 10.1002/aenm.201702884
Sun B J, Han Y, Li S W, Xu P, Han X J, Nafady A, Ma S Q, Du Y C. Cotton cloth supported tungsten carbide/carbon nanocomposites as a Janus film for solar driven interfacial water evaporation[J]. J. Mater. Chem. A, 2021,9(40):23140-23148. doi: 10.1039/D1TA06707A
He N, Yang Y F, Wang H N, Li F, Jiang B, Tang D W, Li L. Ion-transfer engineering via Janus hydrogels enables ultrahigh performance and salt-resistant solar desalination[J]. Adv. Mater., 2023,35(24)e2300189. doi: 10.1002/adma.202300189
Pan Y M, Li E, Wang Y J, Liu C T, Shen C Y, Liu X H. Simple design of a porous solar evaporator for salt-free desalination and rapid evaporation[J]. Environ. Sci. Technol., 2022,56(16):11818-11826. doi: 10.1021/acs.est.2c03240
Fan X F, Peng Y L, Lv B W, Yang Y, You Z J, Song C W, Xu Y L. A siphon-based spatial evaporation device for efficient salt-free interfacial steam generation[J]. Desalination, 2023,552116442. doi: 10.1016/j.desal.2023.116442
Menon A K, Haechler I, Kaur S, Lubner S, Prasher R S. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management[J]. Nat. Sustain., 2020,3(2):144-151. doi: 10.1038/s41893-019-0445-5
Cooper T A, Zandavi S H, Ni G W, Tsurimaki Y, Huang Y, Boriskina S V, Chen G. Contactless steam generation and superheating under one sun illumination[J]. Nat. Commun., 2018,9(1)5086. doi: 10.1038/s41467-018-07494-2
Bian Y, Tang K, Tian L Y, Zhao L J, Zhu S M, Lu H, Yang Y, Ye J D, Gu S L. Sustainable solar evaporation while salt accumulation[J]. ACS Appl. Mater. Interfaces, 2021,13(4):4935-4942. doi: 10.1021/acsami.0c17177
Zhao W, Gong H, Song Y, Li B, Xu N, Min X Z, Liu G L, Zhu B, Zhou L, Zhang X X, Zhu J. Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment[J]. Adv. Funct. Mater., 2021,31(23)2100025. doi: 10.1002/adfm.202100025
Zhang H, Du Y P, Jing D W, Yang L, Ji J Y, Li X K. Integrated Janus evaporator with an enhanced donnan effect and thermal localization for salt-tolerant solar desalination and thermal-to-electricity generation[J]. ACS Appl. Mater. Interfaces, 2023,15(42):49892-49901. doi: 10.1021/acsami.3c12517
Guo Y H, Zhao X, Zhao F, Jiao Z H, Zhou X Y, Yu G H. Tailoring surface wetting states for ultrafast solar-driven water evaporation[J]. Energy Environ. Sci., 2020,13(7):2087-2095. doi: 10.1039/D0EE00399A
Liu Z X, Zhou Z, Wu N Y, Zhang R Q, Zhu B, Jin H, Zhang Y M, Zhu M F, Chen Z G. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination[J]. ACS Nano, 2021,15(8):13007-13018. doi: 10.1021/acsnano.1c01900
Wang Y D, Wu X, Gao T, Lu Y, Yang X F, Chen G Y, Owens G, Xu H L. Same materials, bigger output: A reversibly transformable 2D-3D photothermal evaporator for highly efficient solar steam generation[J]. Nano Energy, 2021,79105477. doi: 10.1016/j.nanoen.2020.105477
Liu X H, Liu Z C, Devadutta Mishra D, Chen Z H, Zhao J, Hu C Q. Evaporation rate far beyond the input solar energy limit enabled by introducing convective flow[J]. Chem. Eng. J., 2022,429132335. doi: 10.1016/j.cej.2021.132335
Ma C, Liu Q L, Peng Q Q, Yang G H, Jiang M, Zong L, Zhang J M. Biomimetic hybridization of Janus-like graphene oxide into hierarchical porous hydrogels for improved mechanical properties and efficient solar desalination devices[J]. ACS Nano, 2021,15(12):19877-19887. doi: 10.1021/acsnano.1c07391
Ding D W, Wu H, He X P, Yang F, Gao C B, Yin Y D, Ding S J. A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation[J]. J. Mater. Chem. A, 2021,9(18):11241-11247. doi: 10.1039/D1TA01045J
Weinstein L A, Loomis J, Bhatia B, Bierman D M, Wang E N, Chen G. Concentrating solar power[J]. Chem. Rev., 2015,115(23):12797-12838. doi: 10.1021/acs.chemrev.5b00397
Sun B H, Wang L, Sun Y, Gao J H, Cao H T, Ren J, Cui J, Yuan X L, Li A Y, Wang C. Enhanced thermal stability of Mo film with low infrared emissivity by a TiN barrier layer[J]. Appl. Surf. Sci., 2022,571151368. doi: 10.1016/j.apsusc.2021.151368
Zhao Z H, Song X D, Zhang Y, Zeng B B, Wu H, Guo S Y. Biomin-eralization-inspired copper sulfide decorated aramid textiles via in situ anchoring toward versatile wearable thermal management[J]. Small, 20232307873.
Song H M, Liu Y H, Liu Z J, Singer M H, Li C Y, Cheney A R, Ji D X, Zhou L, Zhang N, Zeng X, Bei Z M, Yu Z F, Jiang S H, Gan Q Q. Cold vapor generation beyond the input solar energy limit[J]. Adv. Sci., 2018,5(8)1800222. doi: 10.1002/advs.201800222
Wu X, Gao T, Han C H, Xu J S, Owens G, Xu H L. A photothermal reservoir for highly efficient solar steam generation without bulk water[J]. Sci. Bull., 2019,64(21):1625-1633. doi: 10.1016/j.scib.2019.08.022
Li X Q, Li J L, Lu J Y, Xu N, Chen C L, Min X Z, Zhu B, Li H X, Zhou L, Zhu S N, Zhang T J, Zhu J. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018,2(7):1331-1338. doi: 10.1016/j.joule.2018.04.004
Li X Q, Min X Z, Li J L, Xu N, Zhu P C, Zhu B, Zhu S N, Zhu J. Storage and recycling of interfacial solar steam enthalpy[J]. Joule, 2018,2(11):2477-2484. doi: 10.1016/j.joule.2018.08.008
Li X Q, Lin R X, Ni G, Xu N, Hu X Z, Zhu B, Lv G X, Li J L, Zhu S N, Zhu J. Three-dimensional artificial transpiration for efficient solar waste-water treatment[J]. Natl. Sci. Rev., 2018,5(1):70-77. doi: 10.1093/nsr/nwx051
Hong S, Shi Y, Li R Y, Zhang C L, Jin Y, Wang P. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy[J]. ACS Appl. Mater. Interfaces, 2018,10(34):28517-28524. doi: 10.1021/acsami.8b07150
Wang Y D, Wu X, Gao T, Lu Y, Yang X F, Chen G Y, Owens G, Xu H L. Same materials, bigger output: A reversibly transformable 2D-3D photothermal evaporator for highly efficient solar steam generation[J]. Nano Energy, 2021,79105477. doi: 10.1016/j.nanoen.2020.105477
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
(a) Plasmonic heating, (b) electron-hole generation and relaxation, and (c) thermal vibration of molecules.