Citation: Xinxin JING, Weiduo WANG, Hesu MO, Peng TAN, Zhigang CHEN, Zhengying WU, Linbing SUN. Research progress on photothermal materials and their application in solar desalination[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371 shu

Research progress on photothermal materials and their application in solar desalination

Figures(13)

  • Interfacial solar evaporation devices for desalination have attracted significant attention due to their ecofriendliness, simplicity, high efficiency, and versatility. In contrast to traditional volumetric evaporation devices, interfacial solar evaporation devices confine the collection of sunlight and steam generation to the air-water interface, avoiding the need to heat the entire water volume from the bottom to generate vapor, thus greatly improving energy utilization efficiency. This paper details the photothermal conversion mechanisms, types, and performance of the photothermal materials, which are one of the important components of interfacial solar vapor generators. Then, the device design strategies for efficient seawater purification are thoroughly discussed, including the enhancement of light absorption, the supply of sufficient water, and the resistance and elimination of salt. Based on these discussions, the research progress of interfacial solar evaporation devices is summarized, and the development prospects of novel solar evaporation devices for desalination are anticipated.
  • 加载中
    1. [1]

      Hua M, Zhang L, Fan L W, Lv Y, Lu H, Yu Z T, Cen K F. Experimental investigation of effect of heat load on thermal performance of natural circulation steam generation system as applied to PTC-based solar system[J]. Energy Conv. Manage., 2015,91:101-109. doi: 10.1016/j.enconman.2014.11.056

    2. [2]

      Haddeland I, Heinke J, Biemans H, Eisner S, Florke M, Hanasaki N, Konzmann M, Ludwig F, Masaki Y, Schewe J, Stacke T, Tessler Z D, Wada Y, Wisser D. Global water resources affected by human interventions and climate change[J]. Proc. Natl. Acad. Sci. U. S. A., 2014,111(9):3251-3256. doi: 10.1073/pnas.1222475110

    3. [3]

      Anis S F, Hashaikeh R, Hilal N. Functional materials in desalination: A review[J]. Desalination, 2019,468114077. doi: 10.1016/j.desal.2019.114077

    4. [4]

      Sharon H, Reddy K S. A review of solar energy driven desalination technologies[J]. Renew. Sust. Energ. Rev., 2015,41:1080-1118. doi: 10.1016/j.rser.2014.09.002

    5. [5]

      Ahmed F E, Hashaikeh R, Hilal N. Solar powered desalination-Technology, energy and future outlook[J]. Desalination, 2019,453:54-76. doi: 10.1016/j.desal.2018.12.002

    6. [6]

      Chen C J, Kuang Y D, Hu L B. Challenges and opportunities for solar evaporation[J]. Joule, 2019,3(3):683-718. doi: 10.1016/j.joule.2018.12.023

    7. [7]

      Neumann O, Urban A S, Day J, Lal S, Nordlander P, Halas N J. Solar vapor generation enabled by nanoparticles[J]. ACS Nano, 2013,7(1):42-49. doi: 10.1021/nn304948h

    8. [8]

      LIU J, PAN R R, ZHANG E H, LI Y M, LIU J J, XU M, RONG H P, CHEN W X, ZHANG J T. Mechanistic understanding of plasmon-induced hot electron injection for photocatalytic and photoelectrochemical solar-to-fuel generation[J]. Chinese Journal of Applied Chemistry, 2018,35(8):890-901.  

    9. [9]

      Mateo D, Cerrillo J L, Durini S, Gascon J. Fundamentals and applications of photo-thermal catalysis[J]. Chem. Soc. Rev., 2022,51(4)1547. doi: 10.1039/D2CS90010F

    10. [10]

      Zhu L L, Gao M M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Mater. Horizons, 2018,5(3):323-343. doi: 10.1039/C7MH01064H

    11. [11]

      Liu F H, Lai Y J, Zhao B Y, Bradley R, Wu W P. Photothermal materials for efficient solar powered steam generation[J]. Front. Chem. Sci. Eng., 2019,13(4):636-653. doi: 10.1007/s11705-019-1824-1

    12. [12]

      Wang P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight[J]. Environ. Sci.: Nano, 2018,5(5):1078-1089. doi: 10.1039/C8EN00156A

    13. [13]

      Liu G H, Xu J L, Wang K Y. Solar water evaporation by black photothermal sheets[J]. Nano Energy, 2017,41:269-284. doi: 10.1016/j.nanoen.2017.09.005

    14. [14]

      Wang J, Li Y Y, Deng L, Wei N, Weng Y K, Dong S, Qi D P, Qiu J, Chen X D, Wu T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Adv. Mater., 2017,29(3)1603730. doi: 10.1002/adma.201603730

    15. [15]

      Kim J U, Kang S J, Lee S, Ok J, Kim Y, Roh S H, Hong H, Kim J K, Chae H, Kwon S J, Kim T I. Omnidirectional, broadband light absorption in a hierarchical nanoturf membrane for an advanced solar-vapor generator[J]. Adv. Funct. Mater., 2020,30(50)2003862. doi: 10.1002/adfm.202003862

    16. [16]

      Fang J, Liu Q L, Zhang W, Gu J J, Su Y S, Su H L, Guo C P, Zhang D. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation[J]. J. Mater. Chem. A, 2017,5(34):17817-17821. doi: 10.1039/C7TA05976K

    17. [17]

      Wu J K, Tan P, Lu J, Jiang Y, Liu X Q, Sun L B. Fabrication of photothermal silver nanocube/ZIF-8 composites for visible-light-regulated release of propylene[J]. ACS Appl. Mater. Interfaces, 2019,11(32):29298-29304. doi: 10.1021/acsami.9b09629

    18. [18]

      Sun Z, Wang J J, Wu Q L, Wang Z Y, Wang Z, Sun J, Liu C J. Plasmon based double-layer hydrogel device for a highly oefficient solar vapor generation[J]. Adv. Funct. Mater., 2019,29(29)1901312. doi: 10.1002/adfm.201901312

    19. [19]

      Zhu M W, Li Y J, Chen F J, Zhu X Y, Dai J Q, Li Y F, Yang Z, Yan X J, Song J W, Wang Y B, Hitz E, Luo W, Lu M H, Yang B, Hu L B. Plasmonic wood for high-efficiency solar steam generation[J]. Adv. Energy Mater., 2018,8(4)1701028. doi: 10.1002/aenm.201701028

    20. [20]

      Sanz J M, Ortiz D, Alcaraz de la Osa R, Saiz J M, González F, Brown A S, Losurdo M, Everitt H O, Moreno F. UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: Geometry and substrate effects[J]. J. Phys. Chem. C, 2013,117(38):19606-19615. doi: 10.1021/jp405773p

    21. [21]

      Zhou L, Tan Y L, Wang J Y, Xu W C, Yuan Y, Cai W S, Zhu S N, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nat. Photonics, 2016,10(6):393-398. doi: 10.1038/nphoton.2016.75

    22. [22]

      Lin Y W, Chen Z H, Fang L, Meng M, Liu Z F, Di Y S, Cai W D, Huang S S, Gan Z X. Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation[J]. Nanotechnology, 2019,30(1)015402. doi: 10.1088/1361-6528/aae678

    23. [23]

      Zhang L L, Xing J, Wen X L, Chai J W, Wang S J, Xiong Q H. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination[J]. Nanoscale, 2017,9(35):12843-12849. doi: 10.1039/C7NR05149B

    24. [24]

      Gao M M, Peh C K, Phan H T, Zhu L L, Ho G W. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation[J]. Adv. Energy Mater., 2018,8(25)1800711. doi: 10.1002/aenm.201800711

    25. [25]

      Goel S, Chen F, Cai W B. Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics[J]. Small, 2014,10(4):631-645. doi: 10.1002/smll.201301174

    26. [26]

      Wu X, Robson M E, Phelps J L, Tan J S, Shao B, Owens G, Xu H L. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation[J]. Nano Energy, 2019,56:708-715. doi: 10.1016/j.nanoen.2018.12.008

    27. [27]

      Chen C J, Liu H Y, Wang H T, Zhao Y W, Li M. A scalable broadband plasmonic cuprous telluride nanowire-based hybrid photothermal membrane for efficient solar vapor generation[J]. Nano Energy, 2021,84105868. doi: 10.1016/j.nanoen.2021.105868

    28. [28]

      Guo Z Z, Wang G, Ming X, Mei T, Wang J Y, Li J H, Qian J W, Wang X B. PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization[J]. ACS Appl. Mater. Interfaces, 2018,10(29):24583-24589. doi: 10.1021/acsami.8b08019

    29. [29]

      Liu H W, Chen C J, Wen H, Guo R X, Williams N A, Wang B D, Chen F J, Hu L B. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification[J]. J. Mater. Chem. A, 2018,6(39):18839-18846. doi: 10.1039/C8TA05924A

    30. [30]

      Mu C H, Song Y Q, Deng K, Lin S, Bi Y T, Scarpa F, Crouse D. High solar desalination efficiency achieved with 3D Cu2ZnSnS4 nanosheet-assembled membranes[J]. Adv. Sustain. Syst., 2017,1(10)1700064. doi: 10.1002/adsu.201700064

    31. [31]

      Shi Y, Li R Y, Jin Y, Zhuo S F, Shi L, Chang J, Hong S, Ng K C, Wang P. A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018,2(6):1171-1186. doi: 10.1016/j.joule.2018.03.013

    32. [32]

      Shi Y, Li R Y, Shi L, Ahmed E, Jin Y, Wang P. A Robust CuCr2O4/SiO2 Composite photothermal material with underwater black property and extremely high thermal stability for solar-driven water evaporation[J]. Adv. Sustain. Syst., 2018,2(3)1700145. doi: 10.1002/adsu.201700145

    33. [33]

      Ye M M, Jia J, Wu Z J, Qian C X, Chen R, O'Brien P G, Sun W, Dong Y C, Ozin G A. Synthesis of black TiOxnanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation[J]. Adv. Energy Mater., 2017,7(4)1601811. doi: 10.1002/aenm.201601811

    34. [34]

      Liu X H, Cheng H Y, Guo Z Z, Zhan Q, Qian J W, Wang X B. Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation[J]. ACS Appl. Mater. Interfaces, 2018,10(46):39661-39669. doi: 10.1021/acsami.8b13374

    35. [35]

      Lu Q C, Yang Y, Feng J R, Wang X. Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation[J]. Solar RRL, 2019,3(2)1800277. doi: 10.1002/solr.201800277

    36. [36]

      Liu Y C, Wang X Q, Wu H. High-performance wastewater treatment based on reusable functional photo-absorbers[J]. Chem. Eng. J., 2017,309:787-794. doi: 10.1016/j.cej.2016.10.033

    37. [37]

      Li D S, Han D T, Guo C W, Huang C L. Facile preparation of MnO2-deposited wood for high-efficiency solar steam generation[J]. ACS Appl. Energy Mater., 2021,4(2):1752-1762. doi: 10.1021/acsaem.0c02902

    38. [38]

      Li R Y, Zhang L B, Shi L, Wang P. MXene Ti3C2: An effective 2D light-to-heat conversion material[J]. ACS Nano, 2017,11(4):3752-3759. doi: 10.1021/acsnano.6b08415

    39. [39]

      Lin H, Wang X G, Yu L D, Chen Y, Shi J L. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Lett., 2017,17(1):384-391. doi: 10.1021/acs.nanolett.6b04339

    40. [40]

      Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification[J]. ACS Appl. Mater. Interfaces, 2019,11(40):36589-36597. doi: 10.1021/acsami.9b10606

    41. [41]

      Zhu L, Sun L, Zhang H, Yu D F, Aslan H, Zhao J G, Li Z L, Yu M, Besenbacher F, Sun Y. Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination[J]. Nano Energy, 2019,57:842-850. doi: 10.1016/j.nanoen.2018.12.058

    42. [42]

      Kaur M, Ishii S, Shinde S L, Nagao T. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride[J]. Adv. Sustain. Syst., 2018,3(2)1800112.

    43. [43]

      Xu Y, Li C, Wu X Y, Li M X, Ma Y S, Yang H, Zeng Q D, Sessler J L, Wang Z X. Sheet-like 2D manganese(Ⅳ) complex with high photothermal conversion efficiency[J]. J. Am. Chem. Soc., 2022,144(41):18834-18843. doi: 10.1021/jacs.2c04734

    44. [44]

      Ren H Y, Tang M, Guan B L, Wang K X, Yang J W, Wang F F, Wang M Z, Shan J Y, Chen Z L, Wei D, Peng H L, Liu Z F. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Adv. Mater., 2017,29(38)1702590. doi: 10.1002/adma.201702590

    45. [45]

      Zhang P P, Li J, Lv L X, Zhao Y, Qu L T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano, 2017,11(5):5087-5093. doi: 10.1021/acsnano.7b01965

    46. [46]

      Li X Q, Xu W C, Tang M Y, Zhou L, Zhu B, Zhu S N, Zhu J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proc. Natl. Acad. Sci. U. S. A., 2016,113(49):13953-13958. doi: 10.1073/pnas.1613031113

    47. [47]

      Liu X, Wang X Z, Huang J, Cheng G, He Y R. Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid[J]. Appl. Energy, 2018,220:302-312. doi: 10.1016/j.apenergy.2018.03.097

    48. [48]

      Yin Z, Wang H, Jian M, Li Y, Xia K, Zhang M, Wang C, Wang Q, Ma M, Zheng Q S, Zhang Y. Extremely black vertically aligned carbon nanotube arrays for solar steam generation[J]. ACS Appl. Mater. Interfaces, 2017,9(34):28596-28603. doi: 10.1021/acsami.7b08619

    49. [49]

      Xue G B, Liu K, Chen Q, Yang P H, Li J, Ding T P, Duan J J, Qi B, Zhou J. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Appl. Mater. Interfaces, 2017,9(17):15052-15057. doi: 10.1021/acsami.7b01992

    50. [50]

      Xu N, Hu X Z, Xu W C, Li X Q, Zhou L, Zhu S N, Zhu J. Mushrooms as efficient solar steam-generation devices[J]. Adv. Mater., 2017,29(28)1606762. doi: 10.1002/adma.201606762

    51. [51]

      Bian Y, Du Q Q, Tang K, Shen Y, Hao L C, Zhou D, Wang X K, Xu Z H, Zhang H L, Zhao L J, Zhu S M, Ye J D, Lu H, Yang Y, Zhang R, Zheng Y D, Gu S L. Carbonized bamboos as excellent 3D solar vapor-generation devices[J]. Adv. Mater. Technol., 2018,4(4)1800593.

    52. [52]

      Li C W, Jiang D G, Huo B B, Ding M C, Huang C C, Jia D D, Li H X, Liu C Y, Liu J Q. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination[J]. Nano Energy, 2019,60:841-849. doi: 10.1016/j.nanoen.2019.03.087

    53. [53]

      Ni F, Xiao P, Zhang C, Liang Y, Gu J C, Zhang L, Chen T. Micro-/macroscopically synergetic control of switchable 2D/3D photothermal water purification enabled by robust, portable, and cost-effective cellulose papers[J]. ACS Appl. Mater. Interfaces, 2019,11(17):15498-15506. doi: 10.1021/acsami.9b00380

    54. [54]

      Xiao P, Gu J C, Zhang C, Ni F, Liang Y, He J, Zhang L, Ouyang J Y, Kuo S W, Chen T. A scalable, low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction[J]. Nano Energy, 2019,65104002. doi: 10.1016/j.nanoen.2019.104002

    55. [55]

      Liu Z X, Wu B H, Zhu B, Chen Z G, Zhu M F, Liu X G. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight[J]. Adv. Funct. Mater., 2019,29(43)1905485. doi: 10.1002/adfm.201905485

    56. [56]

      Ding R H, Meng Y S, Qiao Y Q, Wu M H, Ma H J, Zhang B W. Functionalizing cotton fabric via covalently grafting polyaniline for solar-driven interfacial evaporation of brine[J]. Appl. Surf. Sci., 2022,598153665. doi: 10.1016/j.apsusc.2022.153665

    57. [57]

      Xu X, Ozden S, Bizmark N, Arnold C B, Datta S S, Priestley R D. A bioinspired elastic hydrogel for solar-driven water purification[J]. Adv. Mater., 2021,33(18)e2007833. doi: 10.1002/adma.202007833

    58. [58]

      Yang Y Y, Yang L, Yang F Y, Bai W J, Zhang X Q, Li H T, Duan G G, Xu Y T, Li Y W. A bioinspired antibacterial and photothermal membrane for stable and durable clean water remediation[J]. Mater. Horizons, 2023,10(1):268-276. doi: 10.1039/D2MH01151D

    59. [59]

      Zhang X, Zhao S J, Wen B Y, Su Z Q. Sugarcane inspired polydopamine@attapulgite-based aerogels with vertical pore structure for solar-driven steam generation[J]. Sep. Purif. Technol., 2023,321124188. doi: 10.1016/j.seppur.2023.124188

    60. [60]

      Xie Z J, Zhu J T, Zhang L B. Three-dimensionally structured polypyrrole-coated setaria viridis spike composites for efficient solar steam generation[J]. ACS Appl. Mater. Interfaces, 2021,13(7):9027-9035. doi: 10.1021/acsami.0c22917

    61. [61]

      Gao C, Li Y M, Lan L Z, Wang Q, Zhou B G, Chen Y, Li J C, Guo J S, Mao J F. Bioinspired asymmetric polypyrrole membranes with enhanced photothermal conversion for highly efficient solar evaporation[J]. Adv. Sci., 20232306833.

    62. [62]

      Zhao X T, Dong J J, Yu X H, Liu L L, Liu J L, Pan J F. Bioinspired photothermal polyaniline composite polyurethane sponge: Interlayer engineering for high-concentration seawater desalination[J]. Sep. Purif. Technol., 2023,311123181. doi: 10.1016/j.seppur.2023.123181

    63. [63]

      Han J, Xing W Q, Yan J, Wen J, Liu Y T, Wang Y Q, Wu Z F, Tang L C, Gao J F. Stretchable and super hydrophilic polyaniline/halloysite decorated nanofiber composite evaporator for high efficiency seawater desalination[J]. Adv. Fiber Mater., 2022,4(5):1233-1245. doi: 10.1007/s42765-022-00172-5

    64. [64]

      Shu L, Zhang X F, Wang Z G, Liu J, Yao J F. Cellulose-based bi-layer hydrogel evaporator with a low evaporation enthalpy for efficient solar desalination[J]. Carbohydr. Polym., 2024,327121695. doi: 10.1016/j.carbpol.2023.121695

    65. [65]

      Zhang Y, Yin X Y, Yu B, Wang X L, Guo Q Q, Yang J. Recyclable polydopamine-functionalized sponge for high-efficiency clean water generation with dual-purpose solar evaporation and contaminant adsorption[J]. ACS Appl. Mater. Interfaces, 2019,11(35):32559-32568. doi: 10.1021/acsami.9b10076

    66. [66]

      Chong W M, Meng R R, Liu Z X, Liu Q Y, Hu J J, Zhu B, Macharia D K, Chen Z G, Zhang L S. Superhydrophilic polydopamine-modified carbon-fber membrane with rapid seawater-transferring ability for constructing efficient hanging-model evaporator[J]. Adv. Fiber Mater., 2023,5(3):1063-1075. doi: 10.1007/s42765-023-00276-6

    67. [67]

      Yi L C, Ci S Q, Luo S L, Shao P, Hou Y, Wen Z H. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination[J]. Nano Energy, 2017,41:600-608. doi: 10.1016/j.nanoen.2017.09.042

    68. [68]

      Wang L L, Wang M, Xu Z P, Yu W, Xie H Q. Well oil dispersed Au/oxygen-deficient TiO2 nanofluids towards full spectrum solar thermal conversion[J]. Sol. Energy Mater. Sol. Cells, 2020,212110575. doi: 10.1016/j.solmat.2020.110575

    69. [69]

      Wang Z G, Xu W Q, Yu K, Gong S J, Mao H B, Huang R, Zhu Z Q. NiS2 nanocubes coated Ti3C2 nanosheets with enhanced light-to-heat conversion for fast and efficient solar seawater steam generation[J]. Solar RRL, 2021,5(7)2100183. doi: 10.1002/solr.202100183

    70. [70]

      Lin Z X, Wu T T, Feng Y F, Shi J, Zhou B, Zhu C H, Wang Y Y, Liang R L, Mizuno M. Poly (N-phenylglycine)/MoS2 nanohybrid with synergistic solar-thermal conversion for efficient water purification and thermoelectric power generation[J]. ACS Appl. Mater. Interfaces, 2022,14(1):1034-1044. doi: 10.1021/acsami.1c20393

    71. [71]

      Yang Y B, Yang X D, Fu L N, Zou M C, Cao A Y, Du Y P, Yuan Q, Yan C H. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination[J]. ACS Energy Lett., 2018,3(5):1165-1171. doi: 10.1021/acsenergylett.8b00433

    72. [72]

      Ren L T, Yi X L, Yang Z S, Wang D F, Liu L Q, Ye J H. Designing carbonized loofah sponge architectures with plasmonic Cu nanoparticles encapsulated in graphitic layers for highly efficient solar vapor generation[J]. Nano Lett., 2021,21(4):1709-1715. doi: 10.1021/acs.nanolett.0c04511

    73. [73]

      Tian H X, Yu M H, Liu X, Qian J C, Qian W, Chen Z G, Wu Z Y. Plant-cell oriented few-layer MoS2/C as high performance anodes for lithium-ion batteries[J]. Electrochim. Acta, 2022,424140685. doi: 10.1016/j.electacta.2022.140685

    74. [74]

      Zhang X F, Wu G, Yang X C. MoS2 Nanosheet-carbon foam composites for solar steam generation[J]. ACS Appl. Nano Mater., 2020,3(10):9706-9714. doi: 10.1021/acsanm.0c01712

    75. [75]

      Wang S, Deng H, Chang H Y, Li Y Y, Hui H H, Dong Z F, Pu P. Co-hydrothermal carbonization of cotton stalks and MnO2 for direct solar steam generation with high efficiency[J]. Solar RRL, 2021,6(2)2100890.

    76. [76]

      Lin Y, Tian H, Qian J, Yu M, Hu T, Lassi U, Chen Z, Wu Z. Biocarbon-directed vertical δ-MnO2 nanoflakes for boosting lithium-ion diffusion kinetics[J]. Mater. Today Chem., 2022,26101023. doi: 10.1016/j.mtchem.2022.101023

    77. [77]

      Xi S B, Wang M, Wang L L, Xie H Q, Yu W. 3D reduced graphene oxide aerogel supported TiO2-x for shape-stable phase change composites with high photothermal efficiency and thermal conductivity[J]. Sol. Energy Mater. Sol. Cells, 2021,226111068. doi: 10.1016/j.solmat.2021.111068

    78. [78]

      Wang Y C, Wang C Z, Song X J, Megarajan S K, Jiang H Q. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation[J]. J. Mater. Chem. A, 2018,6(3):963-971. doi: 10.1039/C7TA08972D

    79. [79]

      Hu X Z, Xu W C, Zhou L, Tan Y L, Wang Y, Zhu S N, Zhu J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Adv. Mater., 2017,29(5)1604031. doi: 10.1002/adma.201604031

    80. [80]

      DANG Y X, TAN P, LIU X Q, SUN L B. Temperature swing for CO2 capture driven by radiative cooling and solar heating[J]. CIESC Journal, 2023,74(1):469-478.  

    81. [81]

      Wang G, Fu Y, Guo A K, Mei T, Wang J Y, Li J H, Wang X B. Reduced graphene oxide-polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation[J]. Chem. Mater., 2017,29(13):5629-5635. doi: 10.1021/acs.chemmater.7b01280

    82. [82]

      Liu F, Liang W D, Wang C J, Xiao C H, He J X, Zhao G H, Zhu Z Q, Sun H X, Li A. Superhydrophilic and mechanically robust phenolic resin as double layered photothermal materials for efficient solar steam generation[J]. Mater. Today Energy, 2020,16100375. doi: 10.1016/j.mtener.2019.100375

    83. [83]

      Ni F, Xiao P, Qiu N X, Zhang C, Liang Y, Gu J C, Xia J Y, Zeng Z X, Wang L P, Xue Q J, Chen T. Collective behaviors mediated multifunctional black sand aggregate towards environmentally adaptive solar-to-thermal purified water harvesting[J]. Nano Energy, 2020,68104311. doi: 10.1016/j.nanoen.2019.104311

    84. [84]

      Zhao F, Zhou X Y, Shi Y, Qian X, Alexander M, Zhao X P, Mendez S, Yang R G, Qu L T, Yu G H. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nat. Nanotechnol., 2018,13(6):489-495. doi: 10.1038/s41565-018-0097-z

    85. [85]

      Fan X Q, Yang Y, Shi X L, Liu Y, Li H P, Liang J J, Chen Y S. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance[J]. Adv. Funct. Mater., 2020,30(52)2007110. doi: 10.1002/adfm.202007110

    86. [86]

      Li L Y, Liu Y X, Hao P L, Wang Z G, Fu L M, Ma Z F, Zhou J. PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR Ⅰ and Ⅱ window[J]. Biomaterials, 2015,41:132-140. doi: 10.1016/j.biomaterials.2014.10.075

    87. [87]

      Tao F J, Green M, Garcia A V, Xiao T, Van Tran A T, Zhang Y L, Yin Y S, Chen X B. Recent progress of nanostructured interfacial solar vapor generators[J]. Appl. Mater. Today, 2019,17:45-84. doi: 10.1016/j.apmt.2019.07.011

    88. [88]

      Zhu D H, Cai L, Sun Z Y, Zhang A, Heroux P, Kim H, Yu W, Liu Y N. Efficient degradation of tetracycline by rGO@black titanium dioxide nanofluid via enhanced catalysis and photothermal conversion[J]. Sci. Total. Environ., 2021,787147536. doi: 10.1016/j.scitotenv.2021.147536

    89. [89]

      Gong L, Sun J, Zheng P, Lin F, Yang G C, Liu Y S. Two birds one stone: facile and controllable synthesis of the Ag quantum dots/reduced graphene oxide composite with significantly improved solar evaporation efficiency and bactericidal performance[J]. ACS Appl. Mater. Interfaces, 2021,13(15):17649-17657. doi: 10.1021/acsami.1c02480

    90. [90]

      Sun L, Li Z, Su R, Wang Y L, Li Z, Du B S, Sun Y, Guan P F, Besenbacher F, Yu M. Phase-transition induced conversion into a photothermal material: Quasi-metallic WO2.9 nanorods for solar water evaporation and anticancer photothermal therapy[J]. Angew. Chem. Int. Ed., 2018,57(33):10666-10671. doi: 10.1002/anie.201806611

    91. [91]

      Zhao X, Meng X T, Zou H Q, Wang Z H, Du Y D, Shao Y, Qi J, Qiu J S. Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation[J]. Adv. Funct. Mater., 2022,33(7)2209207.

    92. [92]

      Zhou L, Tan Y L, Ji D X, Zhu B, Zhang P, Xu J, Gan Q Q, Yu Z F, Zhu J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Sci. Adv., 2016,2(4)e1501227. doi: 10.1126/sciadv.1501227

    93. [93]

      Zhang X, Chang Q, Li N, Xue C R, Zhang H N, Yang J L, Hu S L. Hierarchical pore-gradient silica aerogel balancing heat and water management for efficient solar-driven water evaporation[J]. Adv. Sustain. Syst., 2022,6(6)2200079. doi: 10.1002/adsu.202200079

    94. [94]

      Chen Y L, Zhao G M, Ren L P, Yang H J, Xiao X F, Xu W L. Blackbody-inspired array structural polypyrrole-sunflower disc with extremely high light absorption for efficient photothermal evaporation[J]. ACS Appl. Mater. Interfaces, 2020,12(41):46653-46660. doi: 10.1021/acsami.0c11549

    95. [95]

      Chen T J, Xie H, Qiao X, Hao S Q, Wu Z Z, Sun D, Liu Z Y, Cao F, Wu B H, Fang X L. Highly anisotropic corncob as an efficient solar steam-generation device with heat localization and rapid water transportation[J]. ACS Appl. Mater. Interfaces, 2020,12(45):50397-50405. doi: 10.1021/acsami.0c13845

    96. [96]

      Geng Y, Sun W, Ying P J, Zheng Y J, Ding J, Sun K, Li L, Li M. Bioinspired fractal design of waste biomass-derived solar-thermal materials for highly efficient solar evaporation[J]. Adv. Funct. Mater., 2020,31(3)2007648.

    97. [97]

      Gao T T, Li Y J, Chen C J, Yang Z, Kuang Y D, Jia C, Song J W, Hitz E M, Liu B Y, Huang H, Yu J Y, Yang B, Hu L B. Architecting a floatable, durable, and scalable steam generator: Hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement[J]. Small Methods, 2019,3(2)1800176. doi: 10.1002/smtd.201800176

    98. [98]

      Li Q W, Zhao X, Li L X, Hu T, Yang Y F, Zhang J P. Facile preparation of polydimethylsiloxane/carbon nanotubes modified melamine solar evaporators for efficient steam generation and desalination[J]. J. Colloid Interface Sci., 2021,584:602-609. doi: 10.1016/j.jcis.2020.10.002

    99. [99]

      Meng T T, Li Z T, Wan Z M, Zhang J, Wang L Z, Shi K J, Bu X T, Alshehri S M, Bando Y, Yamauchi Y, Li D G, Xu X T. MOF-derived nanoarchitectured carbons in wood sponge enable solar-driven pumping for high-efficiency soil water extraction[J]. Chem. Eng. J., 2023,452139193. doi: 10.1016/j.cej.2022.139193

    100. [100]

      Zhu L, Sun L, Zhang H, Aslan H, Sun Y, Huang Y D, Rosei F, Yu M. A solution to break the salt barrier for high-rate sustainable solar desalination[J]. Energy Environ. Sci., 2021,14(4):2451-2459. doi: 10.1039/D1EE00113B

    101. [101]

      Chen S, Sun Z Y, Xiang W L, Shen C Y, Wang Z Y, Jia X Y, Sun J, Liu C J. Plasmonic wooden flower for highly efficient solar vapor generation[J]. Nano Energy, 2020,76104998. doi: 10.1016/j.nanoen.2020.104998

    102. [102]

      Liu C K, Peng Y, Zhao X Z. Flower-inspired bionic sodium alginate hydrogel evaporator enhancing solar desalination performance[J]. Carbohydr. Polym., 2021,273118536. doi: 10.1016/j.carbpol.2021.118536

    103. [103]

      Zou M M, Zhang Y, Cai Z R, Li C X, Sun Z Y, Yu C L, Dong Z C, Wu L, Song Y L. 3D printing a biomimetic bridge-arch solar evaporator for eliminating salt accumulation with desalination and agricultural applications[J]. Adv. Mater., 2021,33(34)e2102443. doi: 10.1002/adma.202102443

    104. [104]

      Li N, Qiao L F, He J T, Wang S X, Yu L M, Murto P, Li X Y, Xu X F. Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design[J]. Adv. Funct. Mater., 2020,31(7)24664.

    105. [105]

      Zhou X Y, Zhao F, Guo Y H, Zhang Y, Yu G H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy Environ. Sci., 2018,11(8):1985-1992. doi: 10.1039/C8EE00567B

    106. [106]

      Guo Y H, Lu H Y, Zhao F, Zhou X Y, Shi W, Yu G H. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Adv. Mater., 2020,32(11)e1907061. doi: 10.1002/adma.201907061

    107. [107]

      Jia C, Li Y J, Yang Z, Chen G, Yao Y G, Jiang F, Kuang Y D, Pastel G, Xie H, Yang B, Das S, Hu L B. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule, 2017,1(3):588-599. doi: 10.1016/j.joule.2017.09.011

    108. [108]

      Fang J, Liu J, Gu J J, Liu Q L, Zhang W, Su H L, Zhang D. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation[J]. Chem. Mater., 2018,30(18):6217-6221. doi: 10.1021/acs.chemmater.8b01702

    109. [109]

      Li J L, Wang X Y, Lin Z H, Xu N, Li X Q, Liang J, Zhao W, Lin R X, Zhu B, Liu G L, Zhou L, Zhu S N, Zhu J. Over 10 kg·m-2·h-1 evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 2020,4(4):928-937. doi: 10.1016/j.joule.2020.02.014

    110. [110]

      Mohseni Ahangar A, Hedayati M A, Maleki M, Ghanbari H, Valanezhad A, Watanabe I. A hydrophilic carbon foam/molybdenum disulfide composite as a self-floating solar evaporator[J]. RSC Adv., 2023,13(3):2181-2189. doi: 10.1039/D2RA07810D

    111. [111]

      Bai H Y, Liu N, Hao L, He P P, Ma C D, Niu R, Gong J, Tang T. Self-floating efficient solar steam generators constructed using super-hydrophilic N, O dual-doped carbon foams from waste polyester[J]. Energy Environ. Mater., 2022,5(4):1204-1213. doi: 10.1002/eem2.12235

    112. [112]

      Bai H Y, He P P, Hao L, Liu N, Fan Z F, Chen B Y, Niu R, Gong J. Engineering self-floating Fe2O3/N, O-doped carbon foam as a bifunctional interfacial solar evaporator for synergetic freshwater production and advanced oxidation process[J]. J. Environ. Chem. Eng., 2022,10(5)108338. doi: 10.1016/j.jece.2022.108338

    113. [113]

      Jiang J, Jiang H L, Xu Y, Ai L H. 1T/2H MoS2 nanoflowers embedded in porous PDMS sponge with high salt-resistance for efficient and durable solar desalination[J]. Desalination, 2022,539115943. doi: 10.1016/j.desal.2022.115943

    114. [114]

      Wang Q M, Jia F F, Huang A H, Qin Y, Song S X, Li Y M, Arroyo M A C. MoS2@sponge with double layer structure for high-efficiency solar desalination[J]. Desalination, 2020,481114359. doi: 10.1016/j.desal.2020.114359

    115. [115]

      Guo P, Zhang S Y, Jin R Y, Teng Z Y, Heng L P, Wang B, Jiang L. A super absorbent resin-based solar evaporator for high-efficient various water treatment[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2022,648129405. doi: 10.1016/j.colsurfa.2022.129405

    116. [116]

      Gao Y, Sun Q M, Chen Y, Zhou X H, Wei C Y, Lyu L H. A highly efficient bio-inspired 3D solar-driven evaporator with advanced heat management and salt fouling resistance design[J]. Chem. Eng. J., 2023,455140500. doi: 10.1016/j.cej.2022.140500

    117. [117]

      Bu Y M, Zhou Y H, Lei W W, Ren L P, Xiao J F, Yang H J, Xu W L, Li J L. A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation[J]. J. Mater. Chem. A, 2022,10(6):2856-2866. doi: 10.1039/D1TA09288J

    118. [118]

      Xia W T, Cheng H Y, Zhou S Q, Yu N N, Hu H. Synergy of copper selenide/MXenes composite with enhanced solar-driven water evaporation and seawater desalination[J]. J. Colloid Interface Sci., 2022,625:289-296. doi: 10.1016/j.jcis.2022.06.028

    119. [119]

      Wang Z X, Gao J, Zhou J J, Gong J W, Shang L W, Ye H B, He F, Peng S Q, Lin Z X, Li Y X, Caruso F. Engineering metal-phenolic networks for solar desalination with directional salt crystallization[J]. Adv. Mater., 2023,35(1)e2209015. doi: 10.1002/adma.202209015

    120. [120]

      Wu L, Dong Z C, Cai Z R, Ganapathy T, Fang N X, Li C X, Yu C L, Zhang Y L, Song Y L. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nat. Commun., 2020,11(1)521. doi: 10.1038/s41467-020-14366-1

    121. [121]

      Gao C, Zhu J J, Li J C, Zhou B G, Liu X J, Chen Y, Zhang Z, Guo J S. Honeycomb-structured fabric with enhanced photothermal management and site-specific salt crystallization enables sustainable solar steam generation[J]. J. Colloid Interface Sci., 2022,619:322-330. doi: 10.1016/j.jcis.2022.03.122

    122. [122]

      Xu N, Zhang H R, Lin Z H, Li J L, Liu G L, Li X Q, Zhao W, Min X Z, Yao P C, Zhou L, Song Y, Zhu B, Zhu S N, Zhu J. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation[J]. Natl. Sci. Rev., 2021,8(10)nwab065. doi: 10.1093/nsr/nwab065

    123. [123]

      Xia Y, Hou Q F, Jubaer H, Li Y, Kang Y, Yuan S, Liu H Y, Woo M W, Zhang L, Gao L, Wang H T, Zhang X W. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J]. Energy Environ. Sci., 2019,12(6):1840-1847. doi: 10.1039/C9EE00692C

    124. [124]

      Kuang Y D, Chen C J, He S M, Hitz E M, Wang Y L, Gan W T, Mi R Y, Hu L B. A High-performance self-regenerating solar evaporator for continuous water desalination[J]. Adv. Mater., 2019,31(23)e1900498. doi: 10.1002/adma.201900498

    125. [125]

      Ni G, Zandavi S H, Javid S M, Boriskina S V, Cooper T A, Chen G. A salt-rejecting floating solar still for low-cost desalination[J]. Energy Environ. Sci., 2018,11(6):1510-1519. doi: 10.1039/C8EE00220G

    126. [126]

      Dang Y X, Tan P, Hu B, Gu C, Liu X Q, Sun L B. Low-energy-consumption temperature swing system for CO2 capture by combining passive radiative cooling and solar heating[J]. Green Energy Environ., 2024,9(3):507-515. doi: 10.1016/j.gee.2022.08.004

    127. [127]

      Zhou H, Wang H X, Niu H T, Gestos A, Lin T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles[J]. Adv. Funct. Mater., 2012,23(13):1664-1670.

    128. [128]

      Li H N, Yang J, Xu Z K. Asymmetric surface engineering for Janus membranes[J]. Adv. Mater. Interfaces, 2020,7(7)1902064. doi: 10.1002/admi.201902064

    129. [129]

      Zhao J Q, Yang Y W, Yang C H, Tian Y P, Han Y, Liu J, Yin X T, Que W X. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination[J]. J. Mater. Chem. A, 2018,6(33):16196-16204. doi: 10.1039/C8TA05569F

    130. [130]

      Tian Y K, Li Y J, Zhang X Y, Jia J, Yang X, Yang S K, Yu J Y, Wu D Q, Wang X L, Gao T T, Li F X. Breath-figure self-assembled low-cost Janus fabrics for highly efficient and stable solar desalination[J]. Adv. Funct. Mater., 2022,32(33)2113258. doi: 10.1002/adfm.202113258

    131. [131]

      Xu W C, Hu X Z, Zhuang S D, Wang Y X, Li X Q, Zhou L, Zhu S N, Zhu J. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Adv. Energy Mater., 2018,8(14)1702884. doi: 10.1002/aenm.201702884

    132. [132]

      Sun B J, Han Y, Li S W, Xu P, Han X J, Nafady A, Ma S Q, Du Y C. Cotton cloth supported tungsten carbide/carbon nanocomposites as a Janus film for solar driven interfacial water evaporation[J]. J. Mater. Chem. A, 2021,9(40):23140-23148. doi: 10.1039/D1TA06707A

    133. [133]

      He N, Yang Y F, Wang H N, Li F, Jiang B, Tang D W, Li L. Ion-transfer engineering via Janus hydrogels enables ultrahigh performance and salt-resistant solar desalination[J]. Adv. Mater., 2023,35(24)e2300189. doi: 10.1002/adma.202300189

    134. [134]

      Pan Y M, Li E, Wang Y J, Liu C T, Shen C Y, Liu X H. Simple design of a porous solar evaporator for salt-free desalination and rapid evaporation[J]. Environ. Sci. Technol., 2022,56(16):11818-11826. doi: 10.1021/acs.est.2c03240

    135. [135]

      Fan X F, Peng Y L, Lv B W, Yang Y, You Z J, Song C W, Xu Y L. A siphon-based spatial evaporation device for efficient salt-free interfacial steam generation[J]. Desalination, 2023,552116442. doi: 10.1016/j.desal.2023.116442

    136. [136]

      Menon A K, Haechler I, Kaur S, Lubner S, Prasher R S. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management[J]. Nat. Sustain., 2020,3(2):144-151. doi: 10.1038/s41893-019-0445-5

    137. [137]

      Cooper T A, Zandavi S H, Ni G W, Tsurimaki Y, Huang Y, Boriskina S V, Chen G. Contactless steam generation and superheating under one sun illumination[J]. Nat. Commun., 2018,9(1)5086. doi: 10.1038/s41467-018-07494-2

    138. [138]

      Bian Y, Tang K, Tian L Y, Zhao L J, Zhu S M, Lu H, Yang Y, Ye J D, Gu S L. Sustainable solar evaporation while salt accumulation[J]. ACS Appl. Mater. Interfaces, 2021,13(4):4935-4942. doi: 10.1021/acsami.0c17177

    139. [139]

      Zhao W, Gong H, Song Y, Li B, Xu N, Min X Z, Liu G L, Zhu B, Zhou L, Zhang X X, Zhu J. Hierarchically designed salt-resistant solar evaporator based on donnan effect for stable and high-performance brine treatment[J]. Adv. Funct. Mater., 2021,31(23)2100025. doi: 10.1002/adfm.202100025

    140. [140]

      Zhang H, Du Y P, Jing D W, Yang L, Ji J Y, Li X K. Integrated Janus evaporator with an enhanced donnan effect and thermal localization for salt-tolerant solar desalination and thermal-to-electricity generation[J]. ACS Appl. Mater. Interfaces, 2023,15(42):49892-49901. doi: 10.1021/acsami.3c12517

    141. [141]

      Guo Y H, Zhao X, Zhao F, Jiao Z H, Zhou X Y, Yu G H. Tailoring surface wetting states for ultrafast solar-driven water evaporation[J]. Energy Environ. Sci., 2020,13(7):2087-2095. doi: 10.1039/D0EE00399A

    142. [142]

      Liu Z X, Zhou Z, Wu N Y, Zhang R Q, Zhu B, Jin H, Zhang Y M, Zhu M F, Chen Z G. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination[J]. ACS Nano, 2021,15(8):13007-13018. doi: 10.1021/acsnano.1c01900

    143. [143]

      Wang Y D, Wu X, Gao T, Lu Y, Yang X F, Chen G Y, Owens G, Xu H L. Same materials, bigger output: A reversibly transformable 2D-3D photothermal evaporator for highly efficient solar steam generation[J]. Nano Energy, 2021,79105477. doi: 10.1016/j.nanoen.2020.105477

    144. [144]

      Liu X H, Liu Z C, Devadutta Mishra D, Chen Z H, Zhao J, Hu C Q. Evaporation rate far beyond the input solar energy limit enabled by introducing convective flow[J]. Chem. Eng. J., 2022,429132335. doi: 10.1016/j.cej.2021.132335

    145. [145]

      Ma C, Liu Q L, Peng Q Q, Yang G H, Jiang M, Zong L, Zhang J M. Biomimetic hybridization of Janus-like graphene oxide into hierarchical porous hydrogels for improved mechanical properties and efficient solar desalination devices[J]. ACS Nano, 2021,15(12):19877-19887. doi: 10.1021/acsnano.1c07391

    146. [146]

      Ding D W, Wu H, He X P, Yang F, Gao C B, Yin Y D, Ding S J. A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation[J]. J. Mater. Chem. A, 2021,9(18):11241-11247. doi: 10.1039/D1TA01045J

    147. [147]

      Weinstein L A, Loomis J, Bhatia B, Bierman D M, Wang E N, Chen G. Concentrating solar power[J]. Chem. Rev., 2015,115(23):12797-12838. doi: 10.1021/acs.chemrev.5b00397

    148. [148]

      Sun B H, Wang L, Sun Y, Gao J H, Cao H T, Ren J, Cui J, Yuan X L, Li A Y, Wang C. Enhanced thermal stability of Mo film with low infrared emissivity by a TiN barrier layer[J]. Appl. Surf. Sci., 2022,571151368. doi: 10.1016/j.apsusc.2021.151368

    149. [149]

      Zhao Z H, Song X D, Zhang Y, Zeng B B, Wu H, Guo S Y. Biomin-eralization-inspired copper sulfide decorated aramid textiles via in situ anchoring toward versatile wearable thermal management[J]. Small, 20232307873.

    150. [150]

      Song H M, Liu Y H, Liu Z J, Singer M H, Li C Y, Cheney A R, Ji D X, Zhou L, Zhang N, Zeng X, Bei Z M, Yu Z F, Jiang S H, Gan Q Q. Cold vapor generation beyond the input solar energy limit[J]. Adv. Sci., 2018,5(8)1800222. doi: 10.1002/advs.201800222

    151. [151]

      Wu X, Gao T, Han C H, Xu J S, Owens G, Xu H L. A photothermal reservoir for highly efficient solar steam generation without bulk water[J]. Sci. Bull., 2019,64(21):1625-1633. doi: 10.1016/j.scib.2019.08.022

    152. [152]

      Li X Q, Li J L, Lu J Y, Xu N, Chen C L, Min X Z, Zhu B, Li H X, Zhou L, Zhu S N, Zhang T J, Zhu J. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018,2(7):1331-1338. doi: 10.1016/j.joule.2018.04.004

    153. [153]

      Li X Q, Min X Z, Li J L, Xu N, Zhu P C, Zhu B, Zhu S N, Zhu J. Storage and recycling of interfacial solar steam enthalpy[J]. Joule, 2018,2(11):2477-2484. doi: 10.1016/j.joule.2018.08.008

    154. [154]

      Li X Q, Lin R X, Ni G, Xu N, Hu X Z, Zhu B, Lv G X, Li J L, Zhu S N, Zhu J. Three-dimensional artificial transpiration for efficient solar waste-water treatment[J]. Natl. Sci. Rev., 2018,5(1):70-77. doi: 10.1093/nsr/nwx051

    155. [155]

      Hong S, Shi Y, Li R Y, Zhang C L, Jin Y, Wang P. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy[J]. ACS Appl. Mater. Interfaces, 2018,10(34):28517-28524. doi: 10.1021/acsami.8b07150

    156. [156]

      Wang Y D, Wu X, Gao T, Lu Y, Yang X F, Chen G Y, Owens G, Xu H L. Same materials, bigger output: A reversibly transformable 2D-3D photothermal evaporator for highly efficient solar steam generation[J]. Nano Energy, 2021,79105477. doi: 10.1016/j.nanoen.2020.105477

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    6. [6]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    10. [10]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    14. [14]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    15. [15]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    17. [17]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    18. [18]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    19. [19]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    20. [20]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

Metrics
  • PDF Downloads(5)
  • Abstract views(183)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return