Citation: Hong LI, Xiaoying DING, Cihang LIU, Jinghan ZHANG, Yanying RAO. Detection of iron and copper ions based on gold nanorod etching colorimetry[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370 shu

Detection of iron and copper ions based on gold nanorod etching colorimetry

  • Corresponding author: Yanying RAO, yanyingrao@ptu.edu.cn
  • Received Date: 8 October 2023
    Revised Date: 13 January 2024

Figures(9)

  • In an acidic environment, Fe3+ and Cu2+ reacted with KI solution to oxidize I- to I2, and I2 was used to etch Au nanorods (AuNRs) to produce a blue shift of the longitudinal surface plasmon resonance (LSPR) absorption peak of AuNRs to achieve the detection of Fe3+ and Cu2+. At a reaction temperature of 50 ℃, 0.8 mL HCl (0.1 mol· L-1), 2 mL KI (20 mmol· L-1), and 2 mL AuNRs solution were added in 2 mL 500 μmol·L-1 of Fe3+ or 30 μmol·L-1 of Cu2+ solution, and the Fe3+ or Cu2+ solution could etch AuNRs until the LSPR absorption peak of AuNRs disappeared after 25 or 90 min. The concentrations of Fe3+ and Cu2+ had a good linear relationship with the LSPR absorption peak shift of AuNRs, and the R2 was above 0.99. This method has excellent selectivity and accuracy for the detection of Fe3+ and Cu2+, with a maximum error of only 0.69% and 2.6%, respectively. For the detection of Fe3+ and Cu2+ coexistent system, the addition of an appropriate amount of F- in Fe3+ solution to form a complex [FeF6]3- can chemically mask Fe3+, which can eliminate the interference of Fe3+ in the coexistence system. The results showed that in a Cu2+ concentration range of 0-20 μmol·L-1, the LSPR absorption peaks of AuNRs before and after the addition of Fe3+-F- masking system were blue-shifted 217 and 210 nm, respectively. There was a good linear relationship between the Cu2+ concentration and the LSPR absorption peak shift of AuNRs, and the R2 was above 0.99. It can be concluded that the accurate detection of Cu2+ in the mixed system can be achieved by chemically masking the Fe3+ in the coexisting ions.
  • 加载中
    1. [1]

      Hinman J G, Stork A J, Varnell J A, Gewirth A A, Murphy C J. Seed mediated growth of gold nanorods: towards nanorod matryoshkas[J]. Faraday Discuss., 2016,191:9-33. doi: 10.1039/C6FD00145A

    2. [2]

      Attia Y A, Vazquez-Vazquez C, Blanco M C, Buceta D, Lopez-Quintela M A. Gold nanorod synthesis catalyzed by Au clusters[J]. Faraday Discuss., 2016,191:205-213. doi: 10.1039/C6FD00015K

    3. [3]

      Wei A H, Ouyang J F, Guo Y Y, Jiang S J, Chen F F, Huang J, Xiao Q, Wu Z H. Controlled synthesis of monodisperse gold nanorods with a small diameter of around 10 nm and largest plasmon wavelength of 1200 nm[J]. Phys. Chem. Chem. Phys., 2023,25(31):20843-20853. doi: 10.1039/D3CP02203J

    4. [4]

      Yang Y I, Choi I, Hong S, Lee S, Kang T, Lee H, Yi J. Selective aggregation of polyanion-coated gold nanorods induced by divalent metal ions in an aqueous solution[J]. J. Nanosci. Nanotechnol., 2010,10(5):3538-3542. doi: 10.1166/jnn.2010.2298

    5. [5]

      Zhou X J, Liu Q, Shi X Y, Xu C L, Li B X. Effect of aspect ratio on the chirality of gold nanorods prepared through conventional seed-mediated growth method[J]. Anal. Chim. Acta, 2021,1152338277. doi: 10.1016/j.aca.2021.338277

    6. [6]

      Fu G D, Sun D W, Pu H B, Wei Q Y. Fabrication of gold nanorods for SERS detection of thiabendazole in apple[J]. Talanta, 2019,195:841-849. doi: 10.1016/j.talanta.2018.11.114

    7. [7]

      LI J, WANG J H, YANG A L, SHI Z N, WANG J W, ZHAO Q F, ZHANG Y. Preparation of gold nanospheres and gold nanorods and their photothermal catalytic properties[J]. Chinese J. Inorg. Chem., 2018,34(9):1610-1614. doi: 10.11862/CJIC.2018.189

    8. [8]

      Wang Y, Gu K, Wang H S, Shi B, Tang C S. Remediation of heavy-metal-contaminated soils by biochar: A review[J]. Environ. Geotech., 2022,9(3):135-148.

    9. [9]

      Khan K, Mohsin A, Sharif H M A, Maryam A, Ali J, Li X, Ibrahim S M, Ayaz M, Zhou Y Q, Younas M. Heavy metal pollution in the soil of a riverine basin: Distribution, source, and potential hazards. Environ. Monit. Assess., 2022, 194(9): 168-183

    10. [10]

      Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero V H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods[J]. Environ. Technol. Innov., 2021,22101504. doi: 10.1016/j.eti.2021.101504

    11. [11]

      El Bahgy H E K, Elabd H, Elkorashey R M. Heavy metals bioaccumulation in marine cultured fish and its probabilistic health hazard[J]. Environ. Sci. Pollut. Res., 2021,28(30):41431-41438. doi: 10.1007/s11356-021-13645-8

    12. [12]

      Rihana-Abdallah A, Li Z, Lanigan K C. Using cloud point extraction for preconcentration and determination of iron, lead, and cadmium in drinking water by flame atomic absorption spectrometry[J]. Anal. Lett., 2022,55(8):1296-1305. doi: 10.1080/00032719.2021.2002349

    13. [13]

      LI Q Q, ZHANG Y Q, ZHENG Y, ZHANG Y M. Co-pyrolysis characteristics of sludge and vinegar grains and alkali metal migration law[J]. Chinese J. Inorg. Chem., 2019,35(11):2057-2065. doi: 10.11862/CJIC.2019.252

    14. [14]

      Fu Z P, Zhang G P, Li H X, Chen J J, Liu F J, Wu Q. Influence of reducing conditions on the release of antimony and arsenic from a tailings sediment[J]. J. Soils Sediments, 2016,16(10):2471-2481. doi: 10.1007/s11368-016-1484-4

    15. [15]

      Butcher D J. Atomic fluorescence spectrometry: A review of advances in instrumentation and novel applications[J]. Appl. Spectrosc. Rev., 2016,51(5):397-416. doi: 10.1080/05704928.2016.1141099

    16. [16]

      Wei X, Hu H K, Zheng B G, Arslan Z, Huang H C, Mao W D, Liu Y M. Profiling metals in Cordyceps sinensis by using inductively coupled plasma mass spectrometry[J]. Anal. Methods, 2017,9(4):724-728. doi: 10.1039/C6AY02524B

    17. [17]

      Hazli U, Abdul-Aziz A, Mat-Junit S, Chee C F, Kong K W. Solid-liquid extraction of bioactive compounds with antioxidant potential from Alternanthera sesillis (red) and identification of the polyphenols using UHPLC-QqQ-MS/MS[J]. Food Res. Int., 2019,115:241-250. doi: 10.1016/j.foodres.2018.08.094

    18. [18]

      Ding Q, Li C, Wang H J, Xu C L, Kuang H. Electrochemical detection of heavy metal ions in water[J]. Chem. Commun., 2021,57(59):7215-7231. doi: 10.1039/D1CC00983D

    19. [19]

      Liu S Y, Li X Y. Colorimetric detection of copper ions using gold nanorods in aquatic environment[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2019,240:49-54. doi: 10.1016/j.mseb.2019.01.008

    20. [20]

      RAO Y Y, WANG B G, LI Z L, CHEN X W, QIU L R, XU H, HUANG J H. Simple fabrication of ordered Au/Ag nanobowl arrays and their surface-enhanced Raman scattering properties[J]. Chinese J. Inorg. Chem., 2023,39(4):753-764. doi: 10.11862/CJIC.2023.018

    21. [21]

      Rao H H, Xue X, Wang H Q, Xue Z H. Gold nanorod etching-based multicolorimetric sensors: Strategies and applications[J]. J. Mater. Chem. C, 2019,7(16):4610-4621. doi: 10.1039/C9TC00757A

    22. [22]

      Guo X, Zhang Q, Sun Y H, Zhao Q, Yang J. Lateral etching of core-shell Au@metal nanorods to metal-tipped Au nanorods with improved catalytic activity[J]. ACS Nano, 2012,6(2):1165-1175. doi: 10.1021/nn203793k

    23. [23]

      Berciaud S, Cognet L, Tamarat P, Lounis B. Observation of intrinsic size effects in the optical response of individual gold nanoparticles[J]. Nano Lett., 2005,5(3):515-518. doi: 10.1021/nl050062t

    24. [24]

      Thambi V, Kar A, Ghosh P, Khatua S. Light-controlled in situ bidirectional tuning and monitoring of gold nanorod plasmon via oxidative etching with FeCl3[J]. J. Phys. Chem. C, 2018,122(43):24885-24890. doi: 10.1021/acs.jpcc.8b06679

    25. [25]

      Zhang Z Y, Chen Z P, Qu C L, Chen L X. Highly sensitive visual detection of copper ions based on the shape-dependent LSPR spectroscopy of gold nanorods[J]. Langmuir, 2014,30(12):3625-3630. doi: 10.1021/la500106a

    26. [26]

      Wu S, Li D D, Gao Z M, Wang J M. Controlled etching of gold nanorods by the Au(Ⅲ)-CTAB complex, and its application to semi-quantitative visual determination of organophosphorus pesticides[J]. Microchim. Acta, 2017,184(11):4383-4391. doi: 10.1007/s00604-017-2468-9

  • 加载中
    1. [1]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    10. [10]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    11. [11]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    12. [12]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(0)
  • Abstract views(150)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return